Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting ...A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.展开更多
This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes...This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes from several nanometers to micrometers. A variety of very simple one-pot methods, at times employing com- mercial microwave ovens, inexpensive low power ultrasound cleaners, or two-electrode electro-chemistry, can be surprisingly effective in the controlled synthesis of a wide range of nanostructured products, if only parameters are carefully chosen. Many approaches which are adopted include synthesis of Ag nanostructures with various shapes in solution, doping of Ag nanoparticles on unmodified silica and on/inside carbon spheres, kinetically controlled growth of Ag micro-particles with novel nanostructures on flat substrates, and galvanic replace- ment towards bimetallic Ag-Au dendrites and carbon composites. Characterizations of shape, composition and microstructure are carried out via scanning and transmission electron microscopy, various spectroscopy methods, N2 absorption measurements and suchlike. The involved growth mechanisms are investigated in order to discover new means towards better control. Size, location and shape control, including micro- and nanostructure features, allows tuning the products properties towards desired applications. We focus on the optical properties and catalytic activities, but also the stability of compounds can be an issue of interest.展开更多
To date,ternary metal oxide semiconductor materials have attracted extensive attention worldwide due to their unique optoelectronic properties.As a classical ternary oxide,Zn2SnO4 is featured with the high electron mo...To date,ternary metal oxide semiconductor materials have attracted extensive attention worldwide due to their unique optoelectronic properties.As a classical ternary oxide,Zn2SnO4 is featured with the high electron mobility,wide band gap,negligible visible light absorption and tailorable electronic band structures.Thus,it is an ideal material for practical use in solar cells,lithium batteries,sensors,and photo-catalysts.In this review,we summarize the recent research progress of this material with the focus on the synthesis methods,nanostructures,and the resulting effects on the crystal structure,optical properties,and photoelectrochemical properties.Moreover,their potential applications in different devices are highlighted and carefully discussed.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金This work was supported by the National Basic Research Program (973 Project) of China (Nos. 2013CB934104 and 2012CB224805), the National Natural Science Foundation of China (No. 21210004), the Shanghai Leading Academic Discipline Project (B108), and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500).
文摘A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core-shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (-521 rna/g) and uniform pore size (-2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuC14. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.
基金supported by the National Basic Research Program of China (No.2010CB631004)the National Natural Science Foundation of China (No.50831004)Doctoral Fund of Ministry of Education of China (No.20090091120034)
文摘This article reviews recent advances in the utilization of various water based synthesis routes towards the shape-controlled synthesis of silver nanoparticles and microstructures in a diverse range of shapes and sizes from several nanometers to micrometers. A variety of very simple one-pot methods, at times employing com- mercial microwave ovens, inexpensive low power ultrasound cleaners, or two-electrode electro-chemistry, can be surprisingly effective in the controlled synthesis of a wide range of nanostructured products, if only parameters are carefully chosen. Many approaches which are adopted include synthesis of Ag nanostructures with various shapes in solution, doping of Ag nanoparticles on unmodified silica and on/inside carbon spheres, kinetically controlled growth of Ag micro-particles with novel nanostructures on flat substrates, and galvanic replace- ment towards bimetallic Ag-Au dendrites and carbon composites. Characterizations of shape, composition and microstructure are carried out via scanning and transmission electron microscopy, various spectroscopy methods, N2 absorption measurements and suchlike. The involved growth mechanisms are investigated in order to discover new means towards better control. Size, location and shape control, including micro- and nanostructure features, allows tuning the products properties towards desired applications. We focus on the optical properties and catalytic activities, but also the stability of compounds can be an issue of interest.
基金This work was supported by the National Natural Science Foundation of China(51673025,21975028 and 21805010)Beiing Municipal Science and Technology Project(181100005118002)+1 种基金Bejing Natural Science Foundation(JQ19008)China Postdoctoral Science Foundation(2020M670144).
文摘To date,ternary metal oxide semiconductor materials have attracted extensive attention worldwide due to their unique optoelectronic properties.As a classical ternary oxide,Zn2SnO4 is featured with the high electron mobility,wide band gap,negligible visible light absorption and tailorable electronic band structures.Thus,it is an ideal material for practical use in solar cells,lithium batteries,sensors,and photo-catalysts.In this review,we summarize the recent research progress of this material with the focus on the synthesis methods,nanostructures,and the resulting effects on the crystal structure,optical properties,and photoelectrochemical properties.Moreover,their potential applications in different devices are highlighted and carefully discussed.