We use molecular dynamics simulation to calculate the thermal conductivities of(5, 5) carbon nanotube superlattices(CNTSLs) and defective carbon nanotubes(DCNTs), where CNTSLs and DCNTs have the same size. It is...We use molecular dynamics simulation to calculate the thermal conductivities of(5, 5) carbon nanotube superlattices(CNTSLs) and defective carbon nanotubes(DCNTs), where CNTSLs and DCNTs have the same size. It is found that the thermal conductivity of DCNT is lower than that of CNTSL at the same concentration of Stone–Wales(SW) defects. We perform the analysis of heat current autocorrelation functions and observe the phonon coherent resonance in CNTSLs, but do not observe the same effect in DCNTs. The phonon vibrational eigen-mode analysis reveals that all modes of phonons are strongly localized by SW defects. The degree of localization of CNTSLs is lower than that of DCNTs, because the phonon coherent resonance results in the phonon tunneling effect in the longitudinal phonon mode. The results are helpful in understanding and tuning the thermal conductivity of carbon nanotubes by defect engineering.展开更多
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry ...A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404278 and 11275163)the Science Foundation of Hunan Province,China(Grant No.2016JJ2131)
文摘We use molecular dynamics simulation to calculate the thermal conductivities of(5, 5) carbon nanotube superlattices(CNTSLs) and defective carbon nanotubes(DCNTs), where CNTSLs and DCNTs have the same size. It is found that the thermal conductivity of DCNT is lower than that of CNTSL at the same concentration of Stone–Wales(SW) defects. We perform the analysis of heat current autocorrelation functions and observe the phonon coherent resonance in CNTSLs, but do not observe the same effect in DCNTs. The phonon vibrational eigen-mode analysis reveals that all modes of phonons are strongly localized by SW defects. The degree of localization of CNTSLs is lower than that of DCNTs, because the phonon coherent resonance results in the phonon tunneling effect in the longitudinal phonon mode. The results are helpful in understanding and tuning the thermal conductivity of carbon nanotubes by defect engineering.
基金supported by the National Defense Pre-research Foundation of China (Grant No 9140A08060407DZ0103)
文摘A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.