The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the fi...The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.展开更多
Ramie cloth/UP resin composite was formed at 0.2 MPa and cured at room temperature for 24 h and treated at 80℃for 2 h. The physical and mechanical properties of the composites with different volume fractions of ramie...Ramie cloth/UP resin composite was formed at 0.2 MPa and cured at room temperature for 24 h and treated at 80℃for 2 h. The physical and mechanical properties of the composites with different volume fractions of ramie cloth were studied. The results show that, with the increase of the volume fraction of the ramie cloth, densities of the composites become greater and greater, though all lower than the theoretical values, the linear shrinkage during the formation decreases from 1.20% of the original UP resin to 0.18% of the composite with 30% of ramie cloth in volume, all the composites also absorb more water than UP resin casting, greater volume fraction of the fiber, more water will be absorbed, but the increase in water absorption becomes smaller and smaller with time. As regards some mechanical properties, the tensile strength, flexural strength, flexural modulus and impact strength are all improved when more ramie fiber is added. Compared with those of pure UP resin casting, the mechanical properties are increased by 93.93%, 76.20%, 190.18% and 227.26% respectively when the volume fraction of the ramie cloth in the composite is 30%. The differential scanning calorimetry results show that only one peak will appear for the sample without or with less ramie fiber while two peaks will appear when more ramie cloth is added.展开更多
Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of th...Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.展开更多
The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize th...The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.展开更多
Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile stre...Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile strength,tensile modulus and electrical resistance of the composites were studied. The results indicate that the CNTs can be dispersed well in the epoxide resin matrix by ultrasonic method,and the mechanical and electrical properties of epoxide resin matrix can be improved significantly. The tensile tests show that the tensile strength and tensile modulus are higher than those of epoxide resin if the content of CNTs is less than 1.75%(mass fraction). When the content of CNTs is 0.75%,the conditional best results are obtained,the tensile strength of the composite is the highest,increased by 18.3% and the tensile modulus is increased by 20.5% compared with the matrix. With the increase of CNTs,the electrical resistance of the composites decreases greatly,while the conductivity of the composite increases. The percolation threshold values of electrical characteristic transformation for this composite material were determined for the first time.展开更多
In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the...In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites.展开更多
To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrice...To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injecti...In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.展开更多
In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial p...In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of thi...We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of this research work was to evaluate sawdust and rice husks as fillers for sustainable phenolic resin based WPCs. Therefore, we investigated the thermal stability of PR/RH and PR/SD WPCs then we studied and compared the tensile, flexural properties of PR/SD and PR/RH WPCs samples, as well as their dimensional stability after water absorption test. Furthermore, through ultraviolet light exposure, we evaluated the effects of photo-oxidation on the water stability and mechanical properties of PR/RH and PR/SD WPCs samples compared to unexposed ones. PR filled with SD presented better mechanical properties compared to PR/RH WPCs samples. However, PR/RH WPCs showed good mechanical properties, and better thermal resistance and better water repulsion capabilities compared to PR/SD WPCs samples. Although, long time UV exposure ended up lowering considerably the mechanical properties and water resistance of PR/SD and PR/RH WPCs, both RH and SD offer great added value as fillers for PR based WPCs;SD having better interactions with PR matrix compared to RH.展开更多
文摘The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.
基金Project(G2002-21) supported by the Funds for Importing High Grade and Overseas Personnels of Nanjing Forestry University
文摘Ramie cloth/UP resin composite was formed at 0.2 MPa and cured at room temperature for 24 h and treated at 80℃for 2 h. The physical and mechanical properties of the composites with different volume fractions of ramie cloth were studied. The results show that, with the increase of the volume fraction of the ramie cloth, densities of the composites become greater and greater, though all lower than the theoretical values, the linear shrinkage during the formation decreases from 1.20% of the original UP resin to 0.18% of the composite with 30% of ramie cloth in volume, all the composites also absorb more water than UP resin casting, greater volume fraction of the fiber, more water will be absorbed, but the increase in water absorption becomes smaller and smaller with time. As regards some mechanical properties, the tensile strength, flexural strength, flexural modulus and impact strength are all improved when more ramie fiber is added. Compared with those of pure UP resin casting, the mechanical properties are increased by 93.93%, 76.20%, 190.18% and 227.26% respectively when the volume fraction of the ramie cloth in the composite is 30%. The differential scanning calorimetry results show that only one peak will appear for the sample without or with less ramie fiber while two peaks will appear when more ramie cloth is added.
文摘Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.
文摘The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.
文摘Carbon nanotubes(CNTs)/epoxide resin composites were prepared,the mechanical and electrical properties of the composites were investigated. The effects of concentration and dispersion state of CNTs on the tensile strength,tensile modulus and electrical resistance of the composites were studied. The results indicate that the CNTs can be dispersed well in the epoxide resin matrix by ultrasonic method,and the mechanical and electrical properties of epoxide resin matrix can be improved significantly. The tensile tests show that the tensile strength and tensile modulus are higher than those of epoxide resin if the content of CNTs is less than 1.75%(mass fraction). When the content of CNTs is 0.75%,the conditional best results are obtained,the tensile strength of the composite is the highest,increased by 18.3% and the tensile modulus is increased by 20.5% compared with the matrix. With the increase of CNTs,the electrical resistance of the composites decreases greatly,while the conductivity of the composite increases. The percolation threshold values of electrical characteristic transformation for this composite material were determined for the first time.
文摘In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites.
文摘To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.
文摘In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.
文摘In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
文摘We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of this research work was to evaluate sawdust and rice husks as fillers for sustainable phenolic resin based WPCs. Therefore, we investigated the thermal stability of PR/RH and PR/SD WPCs then we studied and compared the tensile, flexural properties of PR/SD and PR/RH WPCs samples, as well as their dimensional stability after water absorption test. Furthermore, through ultraviolet light exposure, we evaluated the effects of photo-oxidation on the water stability and mechanical properties of PR/RH and PR/SD WPCs samples compared to unexposed ones. PR filled with SD presented better mechanical properties compared to PR/RH WPCs samples. However, PR/RH WPCs showed good mechanical properties, and better thermal resistance and better water repulsion capabilities compared to PR/SD WPCs samples. Although, long time UV exposure ended up lowering considerably the mechanical properties and water resistance of PR/SD and PR/RH WPCs, both RH and SD offer great added value as fillers for PR based WPCs;SD having better interactions with PR matrix compared to RH.