Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct...Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.展开更多
The arcuate nappe structure on the north edge of the Wuliang Mountains in westernYunnan Province is a complex nappe structural system with multiple superimposed structures.The autochthonous system is a WNW-trending ar...The arcuate nappe structure on the north edge of the Wuliang Mountains in westernYunnan Province is a complex nappe structural system with multiple superimposed structures.The autochthonous system is a WNW-trending arcuate fold belt consisting of the Jurassic andCretaceous and the allochthonous system is mainly composed of Upper Triassic rocks. Generally,the nappe structure moved from south to north, with the hanging wall thrusting in a WNW direc-tion for a distance of over 10km. The deep nappe structural system was formed at depths ofabout 5-10km in an environment not exceeding the greenschist facies. It occurred in theOligocene (about 40-20 Ma).展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones an...Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.展开更多
Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and gen...Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.展开更多
The 1927 Gulang M_S8.0 earthquake is a severe earthquake that followed the Haiyuan M_S8.5 earthquake of 1920 in the Qilian Mt._Hexi Corridor earthquake zone. There are divergences of opinion in the previous studies ab...The 1927 Gulang M_S8.0 earthquake is a severe earthquake that followed the Haiyuan M_S8.5 earthquake of 1920 in the Qilian Mt._Hexi Corridor earthquake zone. There are divergences of opinion in the previous studies about the rupture properties of the earthquake. Based on trenching and field investigation, and analysis of historical data, we hold that the earthquake resulted from the joint process of the Tianqiaogou_Huangyangchuan fault, Dongqingding segment of the Huangcheng_Shuangta fault and the Wuwei_Tianzhu buried fault, which constitute the Gulang nappe. By finite_element numerical simulation on the deformation mechanism of Gulang nappe, it is found that the stress and strain mainly concentrate in the western segment of the Tianqiaogou_Huangyangchuan fault, the Dongqingding segment of the Huangcheng_Shuangta fault, and the Gulangxia segment of the Wuwei_Tianzhu buried fault and the Gulang_Shuangta fault. The stress concentration coincides with the distribution of the earthquake surface rupture. It also proves that the earthquake is an outcome of the Gulang nappe activity as a whole.展开更多
The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superpose...The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superposed on earlier Triassic folds. To achieve an improved understanding of the deep tectonics of the Dabashan nappe structural belt, we processed and interpreted the gravity and magnetic data for this area using new deep reflection seismic and other geophysical data as constraints. The results show that the Sichuan basin and Daba Mountains lie between the Longmenshan and Wulingshan gravity gradient belts. The positive magnetic anomalies around Nanchong-Tongjiang-Wanyuan-Langao and around Shizhu result from the crystalline basement. Modeling of the gravity and magnetic anomalies in the Daba Mountains and the Sichuan basin shows that the crystalline basement around Nanchong-Tongjiang-Wanyuan-Langao extends to the northeast underneath the Wafangdian fault near Ziyang. The magnetic field boundary in the Zhenba-Wanyuan-Chengkou-Zhenping area is the major boundary of the Dabashan nappe thrusting above the Sichuan Basin. This boundary might be the demarcation between the south Dabashan and the north Dabashan structural elements. The low gravity anomaly between Tongjiang and Chengkou might be partly caused by thickened lower crust. The local low gravity anomaly to the south of Chengkou-Wanyuan might result from Mesozoic strata of low density in the Dabashan foreland depression area.展开更多
HN-1#is the first fully working coring well of the Taiyuan Formation(Ty)in the Huinan Coalfield and exploration studies are currently underway on the associated resources of the coal-bearing strata.The HN-1#well is lo...HN-1#is the first fully working coring well of the Taiyuan Formation(Ty)in the Huinan Coalfield and exploration studies are currently underway on the associated resources of the coal-bearing strata.The HN-1#well is located in the Fufeng thrust nappe structural belt in the south of the Huainan Coalfield.Three coal samples from the Ty were collected from HN-1#and inductively-coupled plasma mass spectrometry and inductively-coupled plasma atomic emission spectrometry were used to determine the Ge content of each sample.Based on proximate and ultimate analyses,microscopy data,and analyses of the ash products,some important findings were made.The Ty coal samples had a relatively high total sulfur(Sud)content(4.24%),thus the coal was considered to be a lower ranked coal(high volatility bituminous coal),which also had a low coal ash composition index(k,1.87).Collodetrinite was the main submaceral of the Ty coal.Small amounts of pyrite particles were found in the coal seams of the Ty,while the contents of pyrite and algae in the top and bottom sections of the coal seam were relatively high,which meant that the swampy peat conditions which existed during the formation of the coal seams were affected by seawater;also the degree of mineralization of the coal seam was relatively high,which is consistent with reducing conditions in a coastal environment setting.Atomic force microscopy(AFM)experiments showed that the modes of occurrence of Ge in the Ty coal were mainly those for organic-bound and adsorbed Ge species.The organic carbon isotope values for the Ty coal ranged from-24.1‰to-23.8‰,with an average value of-24.0‰,which is equivalent to the value for terrestrial plants(average value-24.0‰).The Ge content of the Ty coal was 13.57 mg/kg.The Ge content was negatively correlated with volatile matter and the ash yield.展开更多
基金Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(CXLX13-949) supported by the Research and Innovation Project for College Graduates of Jiangsu Province,China+1 种基金Project(51174285) supported by the National Natural Science Foundation of ChinaProject(SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.
文摘The arcuate nappe structure on the north edge of the Wuliang Mountains in westernYunnan Province is a complex nappe structural system with multiple superimposed structures.The autochthonous system is a WNW-trending arcuate fold belt consisting of the Jurassic andCretaceous and the allochthonous system is mainly composed of Upper Triassic rocks. Generally,the nappe structure moved from south to north, with the hanging wall thrusting in a WNW direc-tion for a distance of over 10km. The deep nappe structural system was formed at depths ofabout 5-10km in an environment not exceeding the greenschist facies. It occurred in theOligocene (about 40-20 Ma).
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金supported by a grant from the Ministry of Land and Resources(Project No:19961300002011)for the regional geological survey of the Jinggangshan City section,Yaqian section,Tianhe section,Nashan section of the 1:50,000 geologic mapa key orientation grant(No.KZCXZ-SW-117)of CAS Knowledge Innovation Project for the constitution,structure and evolution of the geotectonic systems of South China Sea and its adjacent regions.
文摘Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.
文摘Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.
文摘The 1927 Gulang M_S8.0 earthquake is a severe earthquake that followed the Haiyuan M_S8.5 earthquake of 1920 in the Qilian Mt._Hexi Corridor earthquake zone. There are divergences of opinion in the previous studies about the rupture properties of the earthquake. Based on trenching and field investigation, and analysis of historical data, we hold that the earthquake resulted from the joint process of the Tianqiaogou_Huangyangchuan fault, Dongqingding segment of the Huangcheng_Shuangta fault and the Wuwei_Tianzhu buried fault, which constitute the Gulang nappe. By finite_element numerical simulation on the deformation mechanism of Gulang nappe, it is found that the stress and strain mainly concentrate in the western segment of the Tianqiaogou_Huangyangchuan fault, the Dongqingding segment of the Huangcheng_Shuangta fault, and the Gulangxia segment of the Wuwei_Tianzhu buried fault and the Gulang_Shuangta fault. The stress concentration coincides with the distribution of the earthquake surface rupture. It also proves that the earthquake is an outcome of the Gulang nappe activity as a whole.
基金supported by Crust Probe Project of China(SINOPROBE-02-01,SINOPROBE-02-03,SINOPROBE-02-06,SINOPROBE-08-02)the Natural Science Foundation of China(Nos.40830316,40874045)+1 种基金China Geological Survey(Nos.1212010611809,1212010711813,1212010811033)scientific research project for public welfare from the Ministry of Land and Resources of China(Nos.200811021,201011042)
文摘The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superposed on earlier Triassic folds. To achieve an improved understanding of the deep tectonics of the Dabashan nappe structural belt, we processed and interpreted the gravity and magnetic data for this area using new deep reflection seismic and other geophysical data as constraints. The results show that the Sichuan basin and Daba Mountains lie between the Longmenshan and Wulingshan gravity gradient belts. The positive magnetic anomalies around Nanchong-Tongjiang-Wanyuan-Langao and around Shizhu result from the crystalline basement. Modeling of the gravity and magnetic anomalies in the Daba Mountains and the Sichuan basin shows that the crystalline basement around Nanchong-Tongjiang-Wanyuan-Langao extends to the northeast underneath the Wafangdian fault near Ziyang. The magnetic field boundary in the Zhenba-Wanyuan-Chengkou-Zhenping area is the major boundary of the Dabashan nappe thrusting above the Sichuan Basin. This boundary might be the demarcation between the south Dabashan and the north Dabashan structural elements. The low gravity anomaly between Tongjiang and Chengkou might be partly caused by thickened lower crust. The local low gravity anomaly to the south of Chengkou-Wanyuan might result from Mesozoic strata of low density in the Dabashan foreland depression area.
基金the Public Welfare Geological Work Project of Anhui Province(2016-g-3-33)National Natural Science Foundation of China(No.41502152)the Anhui Postdoctoral Science Foundation(2015M571940).
文摘HN-1#is the first fully working coring well of the Taiyuan Formation(Ty)in the Huinan Coalfield and exploration studies are currently underway on the associated resources of the coal-bearing strata.The HN-1#well is located in the Fufeng thrust nappe structural belt in the south of the Huainan Coalfield.Three coal samples from the Ty were collected from HN-1#and inductively-coupled plasma mass spectrometry and inductively-coupled plasma atomic emission spectrometry were used to determine the Ge content of each sample.Based on proximate and ultimate analyses,microscopy data,and analyses of the ash products,some important findings were made.The Ty coal samples had a relatively high total sulfur(Sud)content(4.24%),thus the coal was considered to be a lower ranked coal(high volatility bituminous coal),which also had a low coal ash composition index(k,1.87).Collodetrinite was the main submaceral of the Ty coal.Small amounts of pyrite particles were found in the coal seams of the Ty,while the contents of pyrite and algae in the top and bottom sections of the coal seam were relatively high,which meant that the swampy peat conditions which existed during the formation of the coal seams were affected by seawater;also the degree of mineralization of the coal seam was relatively high,which is consistent with reducing conditions in a coastal environment setting.Atomic force microscopy(AFM)experiments showed that the modes of occurrence of Ge in the Ty coal were mainly those for organic-bound and adsorbed Ge species.The organic carbon isotope values for the Ty coal ranged from-24.1‰to-23.8‰,with an average value of-24.0‰,which is equivalent to the value for terrestrial plants(average value-24.0‰).The Ge content of the Ty coal was 13.57 mg/kg.The Ge content was negatively correlated with volatile matter and the ash yield.