Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repa...Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties.展开更多
A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriat...A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.展开更多
A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the ma...A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.展开更多
Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-...Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.展开更多
Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and inte...Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.展开更多
A high frequency pulse power source for TIG welding is developed. The structure of two powers is adopted. The by pass circuit effectively eliminates the effect of the cable equivalent inductance. The maximum frequenc...A high frequency pulse power source for TIG welding is developed. The structure of two powers is adopted. The by pass circuit effectively eliminates the effect of the cable equivalent inductance. The maximum frequency of the output pulse current reaches to 16 kHz . The base current and the peak current can be regulated separately.展开更多
In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be ac...In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.展开更多
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w...A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.展开更多
The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive weld...The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.展开更多
基金Funded by the Center of Excellence in Metals and Materials Engineering(CEMME),Faculty of Engineering,Prince of Songkla UniversitySupported by the National Science,Research and Innovation Fund(NSRF)and Prince of Songkla University(No.ENG6505079S)。
文摘Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties.
基金This work was financially supported by National Natural Science Foundation of China No. 51205179.
文摘A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.
基金National Natural Science Foundation of China (No 59975068) Natural Science Foundation of Tianjin (No993602911)
文摘A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.
基金Innovation Research Group Project of National Natural Science Foundation of China(51621064)The National Natural Science Foundation General Projects(11375038).
文摘Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.
文摘Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.
文摘A high frequency pulse power source for TIG welding is developed. The structure of two powers is adopted. The by pass circuit effectively eliminates the effect of the cable equivalent inductance. The maximum frequency of the output pulse current reaches to 16 kHz . The base current and the peak current can be regulated separately.
文摘In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.
文摘A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.
文摘The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.