Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analys...Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analysis of a burst from FRB 20190520B observed by FAST and Parkes at the same time.The spectrum of this individual burst ended at the upper limit of the FAST frequency band and was simultaneously detected by the Parkes telescope in the 1.5–1.8GHz range.By employing spectral energy distribution(SED)and spectral sharpness methods,we confirmed the presence of narrow-band radiation in FRB 20190520B,which is crucial for understanding its radiation mechanisms.Our findings support the narrow-band characteristics that most repeaters exhibit.This work also highlights the necessity of continued multiband observations to explore its periodicity and frequency-dependent properties,contributing to an in-depth understanding of FRB phenomena.展开更多
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction rev...We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
Confocal laser endomicroscopy(CLE)is a novel endoscopic modality that provides real-time histological information via high-resolution magnified view of the mucosa.CLE has a higher sensitivity,specificity,and diagnosti...Confocal laser endomicroscopy(CLE)is a novel endoscopic modality that provides real-time histological information via high-resolution magnified view of the mucosa.CLE has a higher sensitivity,specificity,and diagnostic accuracy in detecting atrophic gastritis as compared to chromoendoscopy and narrow-band imaging.It can even predict low-grade and high-grade intraepithelial neoplasia by analyzing gastric pit patterns.CLE may have some advantages over the standard biopsy protocol,such as higher diagnostic yield and fewer biopsy requirements.Its diagnostic accuracy in detecting superficial gastric cancer is higher than that of white-light endoscopy.Inherent limitations,such as a narrow field of vision,can be surpassed by technological advancements and integration with other detection methods.Artificial intelligence holds promise in automated analysis of histopathological images.Thus,CLE can be helpful in screening for early gastric cancer and may help reduce the risk of complications from repeated biopsies,such as mucosal damage,bleeding,and infection.展开更多
I am a passionate and dedicated teacher who embarked on a life-changing journey to Xiamen to teach students in a foreign land.With a heart full of enthusiasm and a mind brimming with knowledge,I embraced the challenge...I am a passionate and dedicated teacher who embarked on a life-changing journey to Xiamen to teach students in a foreign land.With a heart full of enthusiasm and a mind brimming with knowledge,I embraced the challenges and rewards of teaching in a new cultural setting.Xiamen,a vibrant coastal city in southeastern China,welcomed me with its bustling streets,traditional architecture,and warm hospitality.As I navigated the city’s narrow alleys and busy markets,I marvelled at the blend of modernity and ancient traditions that defined Xiamen’s unique charm.展开更多
Deep in among the trees was a place that belonged to Bambi's mother.It lay only a few steps from the narrow path used by the deer as they made their way through the wood but it was nearly impossible to find for an...Deep in among the trees was a place that belonged to Bambi's mother.It lay only a few steps from the narrow path used by the deer as they made their way through the wood but it was nearly impossible to find for anyone who did not know where the little gap through the dense bushes was.展开更多
Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Metho...Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.展开更多
Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres...Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres.The effects of different binder types and binder concentrations on the morphology of the microspheres were studied,and results proved that NC/GAP(1:4)provides particles a regular spherical morphology and good dispersion.Subsequently,the influence of the concentration of the dispersed phase and the flow rate of the continuous phase on the particle size distribution of the microspheres was fully studied.The microspheres had narrow particle size distribution and high spherical shape.Under optimized process conditions,HMX/TATB microspheres were prepared and compared with the physical mixtures.The X-ray diffraction,differential scanning calorimetry,flow properties,bulk density,and mechanical sensitivity of the samples were also studied.Results showed that the crystal form of the microspheres remains unchanged,and the binder maintains good compatibility with explosives.In addition,the fluidity,bulk density,real density and safety performance of the microspheres are remarkably better than the physical mixture.This study provides a new method for preparing PBX with narrow particle size distribution,high spherical shape,excellent dispersion and high bulk density.展开更多
The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to...The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to ground-to-air confrontation,there is low efficiency in dealing with complex tasks,and there are interactive conflicts in multiagent systems.This study proposes a multiagent architecture based on a one-general agent with multiple narrow agents(OGMN)to reduce task assignment conflicts.Considering the slow speed of traditional dynamic task assignment algorithms,this paper proposes the proximal policy optimization for task assignment of general and narrow agents(PPOTAGNA)algorithm.The algorithm based on the idea of the optimal assignment strategy algorithm and combined with the training framework of deep reinforcement learning(DRL)adds a multihead attention mechanism and a stage reward mechanism to the bilateral band clipping PPO algorithm to solve the problem of low training efficiency.Finally,simulation experiments are carried out in the digital battlefield.The multiagent architecture based on OGMN combined with the PPO-TAGNA algorithm can obtain higher rewards faster and has a higher win ratio.By analyzing agent behavior,the efficiency,superiority and rationality of resource utilization of this method are verified.展开更多
Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis,as well as studying their vertical canopy architecture,can improve the tree structure of high-quality and high-yield citrus and s...Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis,as well as studying their vertical canopy architecture,can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes.The photosynthesis of 1080 leaves of two labor-saving cultivation modes(wide-row and narrow-plant mode and fenced mode)comparing with the traditional mode were measured,and nitrogen content of all leaves and photosynthetic nitrogen use efficiency(PNUE)were determined.Unmanned aerial vehicle(UAV)-based light detection and ranging(LiDAR)data were used to assess the vertical architecture of three citrus cultivation modes.Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO_(2) assimilation rate,stomatal conductance,and transpiration rate of the upper layer were significantly higher than those of the middle layer,and values of the middle layer were markedly higher than those of the lower layer.In the fenced mode,a significant difference in photosynthetic factors between the upper and middle layers was not observed.A vertical canopy distribution had a more significant effect on PNUE in the traditional mode.Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE.UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud.The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices,especially at higher canopy heights.The labor-saving modes,particularly the fenced mode,had significantly higher height percentile data.展开更多
Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,opt...Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,optical clock,and so on.Herein,to deeply purify laser spectrum with compact size under normal condition,we propose a novel and practical idea to effectively suppress the spontaneous radiation of the laser cavity through weak external distributed perturbation.Subsequently,a laser configuration consisting of a main lasing cavity and an external distributed feedback cavity is proposed.The feedback signal with continuous spatio-temporal phase transition controlled by a distributed feedback structure is injected into the main cavity,which can deeply suppress the coupling rate from the spontaneous radiation to the stimulated emission and extremely purify the laser spectrum.Eventually,an ultra-narrow linewidth on-chip laser system with a side mode suppression ratio greater than 80 dB,an output linewidth of 10 Hz,and a relative intensity noise less than-150 dB/Hz is successfully obtained under normal conditions.The proposed concept in this work provides a new perspective for extreme regulation of laser parameters by using weak external distributed perturbation,which can be valid for various gain-type lasers with wide wavelength bands.展开更多
As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photo...As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photocatalysts,including organic and inorganic semiconductors,suffer from problems of narrow light absorption,poor charge separation,and insufficient active site4-6.These factors severely limit their practical applications.展开更多
We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We...We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We employ particle-in-cell(PIC)simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma.This overlap results in the formation of a transverse standing wave,leading to a spatially periodic high-density modulation known as a plasma grating.The electron density peak within the grating can reach several times the background plasma density.The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons,resulting in Coulomb expansion and acceleration of the electrons.As a result,some electrons expand into vacuum,forming a periodic narrow EBC with an individual beam width in the nanoscale range.To further explore the formation of the nanoscale EBC,we conduct additional PIC simulations to study the dependence on various laser parameters.Overall,our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.展开更多
Spectrally-selective photodetection plays a crucial role in various applications,including target imaging and environmental monitoring.Traditional deep-ultraviolet(DUV)narrowband photodetection systems consist of broa...Spectrally-selective photodetection plays a crucial role in various applications,including target imaging and environmental monitoring.Traditional deep-ultraviolet(DUV)narrowband photodetection systems consist of broadband photodetectors and filters,which complicates the architecture and constrains imaging quality.Here,we introduce an electronic-grade diamond single-crystal photodetector exhibiting an exceptionally narrow spectral response in the DUV range with a full width at half maximum of 8 nm.By examining diamond photodetectors with varying dislocation densities,we propose that mitigating the defect-induced trapping effect to achieve charge collection narrowing,assisted by free exciton radiative recombination,is an effective strategy for narrowband photodetection.The superior performance of this device is evidenced through the imaging of DUV light sources,showcasing its capability to differentiate between distinct light sources and monitor human-safe sterilization systems.Our findings underscore the promising potential applications of electronicgrade diamond in narrowband photodetection and offer a valuable technique for identifying electronic-grade diamond.展开更多
Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing ...Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.展开更多
We present optical frequency combs with a spectral emission of 48 cm-1and an output power of 420 m W based on a single-core quantum cascade laser at λ ~ 8.7μm. A flat top spectrum sustains up to 130 comb modes deliv...We present optical frequency combs with a spectral emission of 48 cm-1and an output power of 420 m W based on a single-core quantum cascade laser at λ ~ 8.7μm. A flat top spectrum sustains up to 130 comb modes delivering ~ 3.2 m W of optical power per mode, making it a valuable tool for dual comb spectroscopy. The homogeneous gain medium, relying on a slightly diagonal bound-to-continuum structure, promises to provide a broad and stable gain for comb operating. Remarkably, the dispersion of this device is measured within 300 fs2/mm to ensure stable comb operation over 90% of the total current range. The comb is observed with a narrow beatnote linewidth around 2 k Hz and has weak dependence on the applied current for stable comb operation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11988101,12203069,12041302,and 12203045)the National SKA Program of China(Grant No.2022SKA0130100)+8 种基金the Office of the Leading Group for Cyberspace Affairs,CAS(Grant No.CAS-WX2023PY0102)the CAS Youth Interdisciplinary Team and the Foundation of Guizhou Provincial Education Department(Grant No.KY(2023)059)support from the National Natural Science Foundation of China(Grant Nos.11988101 and 12041303)the CAS Youth Interdisciplinary Team,the Youth Innovation Promotion Association CAS(Grant No.2021055)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupported by the National Natural Science Foundation of China(Grant No.12203045)the Leading Innovation and Entrepreneurship Team of Zhejiang Province of China(Grant No.2023R01008)the Key R&D Program of Zhejiang(Grant No.2024SSYS0012)supported by the China Scholarship Council(Grant No.202304910441)。
文摘Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analysis of a burst from FRB 20190520B observed by FAST and Parkes at the same time.The spectrum of this individual burst ended at the upper limit of the FAST frequency band and was simultaneously detected by the Parkes telescope in the 1.5–1.8GHz range.By employing spectral energy distribution(SED)and spectral sharpness methods,we confirmed the presence of narrow-band radiation in FRB 20190520B,which is crucial for understanding its radiation mechanisms.Our findings support the narrow-band characteristics that most repeaters exhibit.This work also highlights the necessity of continued multiband observations to explore its periodicity and frequency-dependent properties,contributing to an in-depth understanding of FRB phenomena.
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
基金supported by the National Key Research and Development Program of China (Grant No.2017YFA0302901)the Strategic Priority Research Program,the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No.XDB33010100)+3 种基金the National Natural Science Foundation of China (Grant Nos.12134018,11921004,and 11634015)the Foundation of Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area,China (Grant No.QD2301005)the Postdoctoral Science Foundation of China (Grant No.2021M693370)the Synergetic Extreme Condition User Facility (SECUF)。
文摘We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘Confocal laser endomicroscopy(CLE)is a novel endoscopic modality that provides real-time histological information via high-resolution magnified view of the mucosa.CLE has a higher sensitivity,specificity,and diagnostic accuracy in detecting atrophic gastritis as compared to chromoendoscopy and narrow-band imaging.It can even predict low-grade and high-grade intraepithelial neoplasia by analyzing gastric pit patterns.CLE may have some advantages over the standard biopsy protocol,such as higher diagnostic yield and fewer biopsy requirements.Its diagnostic accuracy in detecting superficial gastric cancer is higher than that of white-light endoscopy.Inherent limitations,such as a narrow field of vision,can be surpassed by technological advancements and integration with other detection methods.Artificial intelligence holds promise in automated analysis of histopathological images.Thus,CLE can be helpful in screening for early gastric cancer and may help reduce the risk of complications from repeated biopsies,such as mucosal damage,bleeding,and infection.
文摘I am a passionate and dedicated teacher who embarked on a life-changing journey to Xiamen to teach students in a foreign land.With a heart full of enthusiasm and a mind brimming with knowledge,I embraced the challenges and rewards of teaching in a new cultural setting.Xiamen,a vibrant coastal city in southeastern China,welcomed me with its bustling streets,traditional architecture,and warm hospitality.As I navigated the city’s narrow alleys and busy markets,I marvelled at the blend of modernity and ancient traditions that defined Xiamen’s unique charm.
文摘Deep in among the trees was a place that belonged to Bambi's mother.It lay only a few steps from the narrow path used by the deer as they made their way through the wood but it was nearly impossible to find for anyone who did not know where the little gap through the dense bushes was.
文摘Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.
基金supported by the National Natural Science Foundation of China(No.22005275)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP,No.2019L0584)the Advantage Disciplines Climbing Plan of Shanxi Province.
文摘Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres.The effects of different binder types and binder concentrations on the morphology of the microspheres were studied,and results proved that NC/GAP(1:4)provides particles a regular spherical morphology and good dispersion.Subsequently,the influence of the concentration of the dispersed phase and the flow rate of the continuous phase on the particle size distribution of the microspheres was fully studied.The microspheres had narrow particle size distribution and high spherical shape.Under optimized process conditions,HMX/TATB microspheres were prepared and compared with the physical mixtures.The X-ray diffraction,differential scanning calorimetry,flow properties,bulk density,and mechanical sensitivity of the samples were also studied.Results showed that the crystal form of the microspheres remains unchanged,and the binder maintains good compatibility with explosives.In addition,the fluidity,bulk density,real density and safety performance of the microspheres are remarkably better than the physical mixture.This study provides a new method for preparing PBX with narrow particle size distribution,high spherical shape,excellent dispersion and high bulk density.
基金the Project of National Natural Science Foundation of China(Grant No.62106283)the Project of National Natural Science Foundation of China(Grant No.72001214)to provide fund for conducting experimentsthe Project of Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-484)。
文摘The scale of ground-to-air confrontation task assignments is large and needs to deal with many concurrent task assignments and random events.Aiming at the problems where existing task assignment methods are applied to ground-to-air confrontation,there is low efficiency in dealing with complex tasks,and there are interactive conflicts in multiagent systems.This study proposes a multiagent architecture based on a one-general agent with multiple narrow agents(OGMN)to reduce task assignment conflicts.Considering the slow speed of traditional dynamic task assignment algorithms,this paper proposes the proximal policy optimization for task assignment of general and narrow agents(PPOTAGNA)algorithm.The algorithm based on the idea of the optimal assignment strategy algorithm and combined with the training framework of deep reinforcement learning(DRL)adds a multihead attention mechanism and a stage reward mechanism to the bilateral band clipping PPO algorithm to solve the problem of low training efficiency.Finally,simulation experiments are carried out in the digital battlefield.The multiagent architecture based on OGMN combined with the PPO-TAGNA algorithm can obtain higher rewards faster and has a higher win ratio.By analyzing agent behavior,the efficiency,superiority and rationality of resource utilization of this method are verified.
基金supported by the National Key Research and Development Plan(no.2019YFD1000104)a project supported by the Fundamental Research Funds for the Central University(no.2662020YLPY020)supported by two National Natural Fund Projects(no.31901963 and 31972356)and an earmarked fund for CARS 26.
文摘Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis,as well as studying their vertical canopy architecture,can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes.The photosynthesis of 1080 leaves of two labor-saving cultivation modes(wide-row and narrow-plant mode and fenced mode)comparing with the traditional mode were measured,and nitrogen content of all leaves and photosynthetic nitrogen use efficiency(PNUE)were determined.Unmanned aerial vehicle(UAV)-based light detection and ranging(LiDAR)data were used to assess the vertical architecture of three citrus cultivation modes.Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO_(2) assimilation rate,stomatal conductance,and transpiration rate of the upper layer were significantly higher than those of the middle layer,and values of the middle layer were markedly higher than those of the lower layer.In the fenced mode,a significant difference in photosynthetic factors between the upper and middle layers was not observed.A vertical canopy distribution had a more significant effect on PNUE in the traditional mode.Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE.UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud.The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices,especially at higher canopy heights.The labor-saving modes,particularly the fenced mode,had significantly higher height percentile data.
基金supported by the National Natural Science Foundation of China(NSFC)(61635004)the National Science Fund for Distinguished Young Scholars(61825501)the Chongqing Natural Science Foundation of Innovative Research Groups under Grant(CSTC2020JCYJ,CXTTX0005)。
文摘Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,optical clock,and so on.Herein,to deeply purify laser spectrum with compact size under normal condition,we propose a novel and practical idea to effectively suppress the spontaneous radiation of the laser cavity through weak external distributed perturbation.Subsequently,a laser configuration consisting of a main lasing cavity and an external distributed feedback cavity is proposed.The feedback signal with continuous spatio-temporal phase transition controlled by a distributed feedback structure is injected into the main cavity,which can deeply suppress the coupling rate from the spontaneous radiation to the stimulated emission and extremely purify the laser spectrum.Eventually,an ultra-narrow linewidth on-chip laser system with a side mode suppression ratio greater than 80 dB,an output linewidth of 10 Hz,and a relative intensity noise less than-150 dB/Hz is successfully obtained under normal conditions.The proposed concept in this work provides a new perspective for extreme regulation of laser parameters by using weak external distributed perturbation,which can be valid for various gain-type lasers with wide wavelength bands.
文摘As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photocatalysts,including organic and inorganic semiconductors,suffer from problems of narrow light absorption,poor charge separation,and insufficient active site4-6.These factors severely limit their practical applications.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12174410,11991072,11991074,12225411,and 12105353)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR060)the State Key Laboratory Program of the Chinese Ministry of Science and Technology,and the CAS Youth Innovation Promotion Association(Grant Nos.Y201952 and 2022242).
文摘We propose a novel approach for generating a high-density,spatially periodic narrow electron beam comb(EBC)from a plasma grating induced by the interference of two intense laser pulses in subcritical-density plasma.We employ particle-in-cell(PIC)simulations to investigate the effects of cross-propagating laser pulses with specific angles overlapping in a subcritical plasma.This overlap results in the formation of a transverse standing wave,leading to a spatially periodic high-density modulation known as a plasma grating.The electron density peak within the grating can reach several times the background plasma density.The charge imbalance between electrons and ions in the electron density peaks causes mutual repulsion among the electrons,resulting in Coulomb expansion and acceleration of the electrons.As a result,some electrons expand into vacuum,forming a periodic narrow EBC with an individual beam width in the nanoscale range.To further explore the formation of the nanoscale EBC,we conduct additional PIC simulations to study the dependence on various laser parameters.Overall,our proposed method offers a promising and controlled approach to generate tunable narrow EBCs with high density.
基金supports from Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(Grant No.2021B1515020105).
文摘Spectrally-selective photodetection plays a crucial role in various applications,including target imaging and environmental monitoring.Traditional deep-ultraviolet(DUV)narrowband photodetection systems consist of broadband photodetectors and filters,which complicates the architecture and constrains imaging quality.Here,we introduce an electronic-grade diamond single-crystal photodetector exhibiting an exceptionally narrow spectral response in the DUV range with a full width at half maximum of 8 nm.By examining diamond photodetectors with varying dislocation densities,we propose that mitigating the defect-induced trapping effect to achieve charge collection narrowing,assisted by free exciton radiative recombination,is an effective strategy for narrowband photodetection.The superior performance of this device is evidenced through the imaging of DUV light sources,showcasing its capability to differentiate between distinct light sources and monitor human-safe sterilization systems.Our findings underscore the promising potential applications of electronicgrade diamond in narrowband photodetection and offer a valuable technique for identifying electronic-grade diamond.
基金supported by the National Natural Science Foundation of China (Grant No. 12074321)the Young Science and Technology Talents Development Project of Guizhou Provincial Education Department (Grant No. QJH-KY [2022]012)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. SWU020019)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyjmsxmx0648)the Chongqing Graduate Student Research Innovation Project (Grant No. CYB22119)。
文摘Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.
基金supported by the National Natural Science Foundation of China(Grant Nos.61734006,61835011,61991430,and 62174158)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2021107)the Key Program of the Chinese Academy of Sciences(Grant Nos.XDB43000000,YJKYYQ20190002,and QYZDJ-SSW-JSC027)。
文摘We present optical frequency combs with a spectral emission of 48 cm-1and an output power of 420 m W based on a single-core quantum cascade laser at λ ~ 8.7μm. A flat top spectrum sustains up to 130 comb modes delivering ~ 3.2 m W of optical power per mode, making it a valuable tool for dual comb spectroscopy. The homogeneous gain medium, relying on a slightly diagonal bound-to-continuum structure, promises to provide a broad and stable gain for comb operating. Remarkably, the dispersion of this device is measured within 300 fs2/mm to ensure stable comb operation over 90% of the total current range. The comb is observed with a narrow beatnote linewidth around 2 k Hz and has weak dependence on the applied current for stable comb operation.