Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to...Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.展开更多
Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed ...Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed model uses a real time dataset offifteen Stocks as input into the system and based on the data,predicts or forecast future stock prices of different companies belonging to different sectors.The dataset includes approximatelyfifteen companies from different sectors and forecasts their results based on which the user can decide whether to invest in the particular company or not;the forecasting is done for the next quarter.Our model uses 3 main concepts for forecasting results.Thefirst one is for stocks that show periodic change throughout the season,the‘Holt-Winters Triple Exponential Smoothing’.3 basic things taken into conclusion by this algorithm are Base Level,Trend Level and Seasoning Factor.The value of all these are calculated by us and then decomposition of all these factors is done by the Holt-Winters Algorithm.The second concept is‘Recurrent Neural Network’.The specific model of recurrent neural network that is being used is Long-Short Term Memory and it’s the same as the Normal Neural Network,the only difference is that each intermediate cell is a memory cell and retails its value till the next feedback loop.The third concept is Recommendation System whichfilters and predict the rating based on the different factors.展开更多
基金Funding is provided by Taif University Researchers Supporting Project Number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature.The stock data is usually non-stationary,and attributes are non-correlative to each other.Several traditional Stock Technical Indicators(STIs)may incorrectly predict the stockmarket trends.To study the stock market characteristics using STIs and make efficient trading decisions,a robust model is built.This paper aims to build up an Evolutionary Deep Learning Model(EDLM)to identify stock trends’prices by using STIs.The proposed model has implemented the Deep Learning(DL)model to establish the concept of Correlation-Tensor.The analysis of the dataset of three most popular banking organizations obtained from the live stock market based on the National Stock exchange(NSE)-India,a Long Short Term Memory(LSTM)is used.The datasets encompassed the trading days from the 17^(th) of Nov 2008 to the 15^(th) of Nov 2018.This work also conducted exhaustive experiments to study the correlation of various STIs with stock price trends.The model built with an EDLM has shown significant improvements over two benchmark ML models and a deep learning one.The proposed model aids investors in making profitable investment decisions as it presents trend-based forecasting and has achieved a prediction accuracy of 63.59%,56.25%,and 57.95%on the datasets of HDFC,Yes Bank,and SBI,respectively.Results indicate that the proposed EDLA with a combination of STIs can often provide improved results than the other state-of-the-art algorithms.
文摘Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed model uses a real time dataset offifteen Stocks as input into the system and based on the data,predicts or forecast future stock prices of different companies belonging to different sectors.The dataset includes approximatelyfifteen companies from different sectors and forecasts their results based on which the user can decide whether to invest in the particular company or not;the forecasting is done for the next quarter.Our model uses 3 main concepts for forecasting results.Thefirst one is for stocks that show periodic change throughout the season,the‘Holt-Winters Triple Exponential Smoothing’.3 basic things taken into conclusion by this algorithm are Base Level,Trend Level and Seasoning Factor.The value of all these are calculated by us and then decomposition of all these factors is done by the Holt-Winters Algorithm.The second concept is‘Recurrent Neural Network’.The specific model of recurrent neural network that is being used is Long-Short Term Memory and it’s the same as the Normal Neural Network,the only difference is that each intermediate cell is a memory cell and retails its value till the next feedback loop.The third concept is Recommendation System whichfilters and predict the rating based on the different factors.