In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas...In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.展开更多
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char...Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.展开更多
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin...The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt.展开更多
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re...Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified...Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.展开更多
Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to...Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to contribute to changes in the energy mix of various countries through the use of technologies that enable its production and use with low or zero carbon emissions. In this context, Brazil has aroused great interest from other countries in exploring its renewable resources for the production of hydrogen (green hydrogen). In this sense, the use of natural gas pipelines and the use of hydrogen in mixtures with natural gas have become the subject of studies due to their economically viable alternative for the immediate use of this energy vector. However, there are still technical and regulatory challenges regarding the integration of hydrogen into the existing natural gas pipeline network. In this context, the present study aims to address the effects of hydrogen interaction with the structure of natural gas pipeline steel and the regulatory barriers to the use of this network for the transportation of green hydrogen, particularly in the state of Ceará/Brazil. After extensive analysis of literature and regulatory documents, it was concluded that: 1) Ceará/Brazil has strong potential to meet the demand for green hydrogen through the use of solar and wind energy sources;2) there is feasibility for the adaptation or conversion of natural gas infrastructure for the transportation of green hydrogen;3) discussions regarding the regulatory competence of green hydrogen transportation and distribution through the natural gas network in Brazil are still incipient;4) the current regulation of the natural gas industry can serve as a subsidy for the regulation of green hydrogen and natural gas transportation.展开更多
Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore prin...In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore principles of pipeline prevention and seek countermeasures.展开更多
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated...The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ^13C1) are -56.7%0. and -60.9%0, and its hydrogen isotope (δD) are -199%0 and -180%0, respectively, indicating the methane from the microbial reduction of CO2. Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process.展开更多
A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental r...A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental results were given. The results showed that the unit could attain a maximum dew point depression of about 20℃ without any need of external mechanical power and chemicals. The pressure loss ratio, shock wave and the flow rate had great influence on the dehydration characteristics. From the systematic analysis of the factors that affect the dehydration efficiency of the unit, the suggestions for improving the unit are put forward.展开更多
Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents...Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.展开更多
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is main...The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.展开更多
An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards to production/transportation systems and to substantial economic risks. Therefore, an ...An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards to production/transportation systems and to substantial economic risks. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Over the years, several models requiring more complicated and longer computations have been proposed for the prediction of hydrate formation conditions of natural gases. For these reasons, it is essential to develop a reliable and simple-to-use method for oil and gas practitioners. The purpose of this study is to formulate a novel empirical correlation for rapid estimation of hydrate formation condition of sweet natural gases. The developed correlation holds for wide range of temperatures (265 - 298 K), pressures (1200 to 40000 kPa) and molecular weights (16-29). New proposed correlation shows consistently accurate results across proposed pressure, temperature and molecular weight ranges. This consistency could not be matched by any of the widely accepted existing correlations within the investigated range. For all conditions, new correlation showed average absolute deviation to be less than 0.2% and provided much better results than the widely accepted existing correlations.展开更多
Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global es...Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.展开更多
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i...The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.展开更多
Natural gases containing sour components exhibit different gas compressibility factor (Z) behavior than do sweet gases. Therefore, a new accurate method should be developed to account for these differences. Several ...Natural gases containing sour components exhibit different gas compressibility factor (Z) behavior than do sweet gases. Therefore, a new accurate method should be developed to account for these differences. Several methods are available today for calculating the Z-factor from an equation of state. However, these equations are more complex than the foregoing correlations, involving a large number of parameters, which require more complicated and longer computations. The aim of this study is to develop a simplified calculation method for a rapid estimating Z-factor for sour natural gases containing as much as 90% total acid gas. In this article, two new correlations are first presented for calculating the pseudo- critical pressure and temperature of the gas mixture as a function of the gas specific gravity. Then, a simple correlation on the basis of the standard gas compressibility factor chart is introduced for a quick estimation of sweet gases' compressibility factor as a function of reduced pressure and temperature. Finally, a new corrective term related to the mole fractions of carbon dioxide and hydrogen sulfide is developed.展开更多
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical...The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.展开更多
Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a ...Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.展开更多
文摘In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金Supported by the National Natural Science Foundation of China(42172149,U2244209)Sinopec Science and Technology Research Project(P23230,P22132)。
文摘Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.
文摘The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt.
基金funded by CNOOC Production Research Project(CCL2022SZPS0076).
文摘Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.
文摘Climate change, mainly caused by the use of non-renewable fuels, has raised global concerns and led to the search for less polluting energy sources, making hydrogen a promising energy alternative with the potential to contribute to changes in the energy mix of various countries through the use of technologies that enable its production and use with low or zero carbon emissions. In this context, Brazil has aroused great interest from other countries in exploring its renewable resources for the production of hydrogen (green hydrogen). In this sense, the use of natural gas pipelines and the use of hydrogen in mixtures with natural gas have become the subject of studies due to their economically viable alternative for the immediate use of this energy vector. However, there are still technical and regulatory challenges regarding the integration of hydrogen into the existing natural gas pipeline network. In this context, the present study aims to address the effects of hydrogen interaction with the structure of natural gas pipeline steel and the regulatory barriers to the use of this network for the transportation of green hydrogen, particularly in the state of Ceará/Brazil. After extensive analysis of literature and regulatory documents, it was concluded that: 1) Ceará/Brazil has strong potential to meet the demand for green hydrogen through the use of solar and wind energy sources;2) there is feasibility for the adaptation or conversion of natural gas infrastructure for the transportation of green hydrogen;3) discussions regarding the regulatory competence of green hydrogen transportation and distribution through the natural gas network in Brazil are still incipient;4) the current regulation of the natural gas industry can serve as a subsidy for the regulation of green hydrogen and natural gas transportation.
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
基金Supported by Scientific Research Program of Water Resources Department of the Xinjiang Uygur Autonomous Region (xjsl-2011-11)Young Core Project of Northwest A&F University (KZCXI-10-4-1)~~
文摘In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore principles of pipeline prevention and seek countermeasures.
基金supported by the National Major Fundamental and Development Project of China (No. 2009CB219501)the National Natural Science Foundation of China (No. 41202099)
文摘The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu I! depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ^13C1) are -56.7%0. and -60.9%0, and its hydrogen isotope (δD) are -199%0 and -180%0, respectively, indicating the methane from the microbial reduction of CO2. Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process.
文摘A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental results were given. The results showed that the unit could attain a maximum dew point depression of about 20℃ without any need of external mechanical power and chemicals. The pressure loss ratio, shock wave and the flow rate had great influence on the dehydration characteristics. From the systematic analysis of the factors that affect the dehydration efficiency of the unit, the suggestions for improving the unit are put forward.
文摘Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.
基金financially supported by the National Natural Science Foundation of China (grants No.41625009, 41302118 and U1663201)the National Key Foundational Research and Development Project (Grant No:2016YFB0600804)the National Science & Technology Special Project (grant No.2016ZX05002-006)
文摘The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%-98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5th member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4th member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3rd and 4th members of the Xujiahe Formation. The gases reservoired in the 2nd member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4th member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.
文摘An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards to production/transportation systems and to substantial economic risks. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Over the years, several models requiring more complicated and longer computations have been proposed for the prediction of hydrate formation conditions of natural gases. For these reasons, it is essential to develop a reliable and simple-to-use method for oil and gas practitioners. The purpose of this study is to formulate a novel empirical correlation for rapid estimation of hydrate formation condition of sweet natural gases. The developed correlation holds for wide range of temperatures (265 - 298 K), pressures (1200 to 40000 kPa) and molecular weights (16-29). New proposed correlation shows consistently accurate results across proposed pressure, temperature and molecular weight ranges. This consistency could not be matched by any of the widely accepted existing correlations within the investigated range. For all conditions, new correlation showed average absolute deviation to be less than 0.2% and provided much better results than the widely accepted existing correlations.
基金This research was financially supported by the CAS consultation project(Grant number-2019-ZW11-Z-035)the National Basic Research Program of China(973)(Projects:2006CB202300,2011CB201100)+1 种基金China High-Tech R&D(863)Program Project(2013AA092600)We would like to thank Gao Deli,Academician of Chinese Academy of Sciences,for his comments and recommendation in publishing this paper in Petroleum Science.
文摘Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.
基金support from Subtopics of National Science and Technology Major Project(2011ZX05026-004-03)the National Natural Science Foundation of China (51104167)
文摘The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.
文摘Natural gases containing sour components exhibit different gas compressibility factor (Z) behavior than do sweet gases. Therefore, a new accurate method should be developed to account for these differences. Several methods are available today for calculating the Z-factor from an equation of state. However, these equations are more complex than the foregoing correlations, involving a large number of parameters, which require more complicated and longer computations. The aim of this study is to develop a simplified calculation method for a rapid estimating Z-factor for sour natural gases containing as much as 90% total acid gas. In this article, two new correlations are first presented for calculating the pseudo- critical pressure and temperature of the gas mixture as a function of the gas specific gravity. Then, a simple correlation on the basis of the standard gas compressibility factor chart is introduced for a quick estimation of sweet gases' compressibility factor as a function of reduced pressure and temperature. Finally, a new corrective term related to the mole fractions of carbon dioxide and hydrogen sulfide is developed.
基金supported by the National High Technology Research and Development Program of China("863 program",No.2007AA09Z301) the National Major Science&Technology Specific Projects(No.2008ZX05017-004)
文摘The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.
基金supported by the Youth Fund of Chinese Academy of Sciences Knowledge Innovation Program area frontier projects (No. S200603)the Innovation Team Project of Education Department of Liaoning Province (No. 2007T050)
文摘Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.