Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS a...Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.展开更多
The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up...The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.展开更多
基金supported by the State 973 Project(Grant No.2006CB202308)the National Natural Science Foundation of China(Grant No.40872097)
文摘Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.
基金supported by the National 973 Basic Research Program(Grant No.2006CB202308)the Major National Science and Technology Program (2008ZX05008-004-012)
文摘The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.