期刊文献+
共找到594篇文章
< 1 2 30 >
每页显示 20 50 100
Real-time Risk-averse Dispatch of an Integrated Electricity and Natural Gas System via Condi-tional Value-at-risk-based Lookup-table Ap-proximate Dynamic Programming
1
作者 Jianquan Zhu Guanhai Li +4 位作者 Ye Guo Jiajun Chen Haixin Liu Yuhao Luo Wenhao Liu 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期47-60,共14页
The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch ... The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk. 展开更多
关键词 Integrated electricity and natural gas system approximate dynamic programming real-time dispatch RISK-AVERSE conditional value-at-risk
原文传递
Cascading Failure Propagation Simulation in Integrated Electricity and Natural Gas Systems 被引量:12
2
作者 Zhejing Bao Qihong Zhang +1 位作者 Lei Wu Dawei Chen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第5期961-970,共10页
The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation acr... The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation across the two systems that deserves intensive research.Considering the distinct time response behaviors of the two systems,this paper discusses an integrated simulation approach to simulate the cascading failure propagation process of integrated electricity and natural gas systems(IEGSs).On one hand,considering instantaneous re-distribution of power flows after the occurrence of disturbance or failure,the steady-state AC power flow model is employed.On the other hand,gas transmission dynamics are represented by dynamic model to capture the details of its transition process.The interactions between the two systems,intensified by energy coupling components(such as gas-fired generator and electricity-driven gas compressor)as well as the switching among the operation modes of compressors during the cascading failure propagation process,are studied.An IEGS composed of the IEEE 30-bus electricity system and a 14-node 15-pipeline gas system is established to illustrate the effectiveness of the proposed simulation approach,in which two energy sub-systems are coupled by compressor and gas-fired generator.Numerical results clearly demonstrate that heterogeneous interactions between electricity and gas systems would trigger the cascading failure propagation between the two coupling systems. 展开更多
关键词 Cascading failure propagation integrated electricity and natural gas system(IEGS) gas compressor transmission dynamics
原文传递
Stochastic Dynamic Economic Dispatch of Wind-integrated Electricity and Natural Gas Systems Considering Security Risk Constraints 被引量:11
3
作者 Zexing Chen Gelan Zhu +4 位作者 Yongjun Zhang Tianyao Ji Ziwen Liu Xiaoming Lin Zexiang Cai 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期324-334,共11页
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of... As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model. 展开更多
关键词 High wind power penetration integrated electricity and natural gas system(IEGS) power-to-gas security risk constraint
原文传递
Comparison of two schemes for district cooling system utilizing cold energy of liquefied natural gas 被引量:1
4
作者 王弢 林文胜 顾安忠 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期316-319,共4页
Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i... Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km. 展开更多
关键词 district cooling system liquefied natural gas(LNG) cold energy utilization system efficiency
下载PDF
Coordinated Dispatch of Integrated Electricity-Natural Gas System and the Freight Railway Network 被引量:5
5
作者 Tao Long Zhaohong Bie +1 位作者 Lizhou Jiang Haipeng Xie 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第4期782-792,共11页
With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economi... With the significant development of liquefied natural gas(LNG)rail transport,the railway system is increasingly more closely connected with the integrated electricity-natural gas system(IEGS).To coordinate the economic operations of the two systems,this paper innovatively proposes a coordinated dispatch model of IEGS with LNG infrastructures and a freight railway network with LNG transport.First,an operational scheduling model of the railway network,considering energy consumption,is put forward for both LNG transmission and ordinary freight transport.Then,the coordinated dispatch problem of IEGS and the railway network is formulated into a mixed-integer linear programming model via the big M method and a modified incremental linearization approach.Finally,a bi-level optimization algorithm based on generalized benders decomposition(GBD)is presented to solve the coordinated dispatch problem due to the restrictions on exchanging private information.Case studies demonstrate the effectiveness of the proposed model and algorithm as well as the potential benefit for wind power accommodation. 展开更多
关键词 Freight railway network generalized benders decomposition(GBD) integrated electricity-natural gas system(IEGS) liquefied natural gas(LNG) wind power accommodation
原文传递
Linearized model for optimization of coupled electricity and natural gas systems 被引量:1
6
作者 Mathias SIRVENT Nikolaos KANELAKIS +1 位作者 Bjorn GEIßLER Pandelis BISKAS 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期364-374,共11页
In this paper,a combined optimization of a coupled electricity and gas system is presented.For the electricity network a unit commitment problem with optimization of energy and reserves under a power pool,considering ... In this paper,a combined optimization of a coupled electricity and gas system is presented.For the electricity network a unit commitment problem with optimization of energy and reserves under a power pool,considering all system operational and unit technical constraints is solved.The gas network subproblem is a medium-scale mixed-integer nonconvex and nonlinear programming problem.The coupling constraints between the two networks are nonlinear as well.The resulting mixed-integer nonlinear program is linearized with the extended incremental method and an outer approximation technique.The resulting model is evaluated using the Greek power and gas system comprising fourteen gas-fired units under four different approximation accuracy levels.The results indicate the efficiency of the proposed mixed-integer linear program model and the interplay between computational requirements and accuracy. 展开更多
关键词 Electricity system natural gas system Mixed-integer(non)linear programming Extended incremental method Outer approximation
原文传递
Characteristics of a Supersonic Swirling Dehydration System of Natural Gas 被引量:24
7
作者 刘恒伟 刘中良 +2 位作者 冯永训 顾克宇 颜廷敏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第1期9-12,共4页
A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental r... A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental results were given. The results showed that the unit could attain a maximum dew point depression of about 20℃ without any need of external mechanical power and chemicals. The pressure loss ratio, shock wave and the flow rate had great influence on the dehydration characteristics. From the systematic analysis of the factors that affect the dehydration efficiency of the unit, the suggestions for improving the unit are put forward. 展开更多
关键词 supersonic swirling separator DEHYDRATION natural gas
下载PDF
Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology 被引量:21
8
作者 Chuan HE Tianqi LIU +1 位作者 Lei WU Mohammad SHAHIDEHPOUR 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期375-388,共14页
The increasing interdependency of electricity and natural gas systems promotes coordination of the two systems for ensuring operational security and economics.This paper proposes a robust day-ahead scheduling model fo... The increasing interdependency of electricity and natural gas systems promotes coordination of the two systems for ensuring operational security and economics.This paper proposes a robust day-ahead scheduling model for the optimal coordinated operation of integrated energy systems while considering key uncertainties of the power system and natural gas system operation cost. Energy hub,with collocated gas-fired units, power-to-gas(Pt G) facilities, and natural gas storages, is considered to store or convert one type of energy(i.e., electricity or natural gas)into the other form, which could analogously function as large-scale electrical energy storages. The column-andconstraint generation(C&CG) is adopted to solve the proposed integrated robust model, in which nonlinear natural gas network constraints are reformulated via a set of linear constraints. Numerical experiments signify the effectiveness of the proposed model for handling volatile electrical loads and renewable generations via the coordinated scheduling of electricity and natural gas systems. 展开更多
关键词 Robust day-ahead scheduling Electricity and natural gas coordination Renewable energy Power-to-gas Column-and-constraint generation
原文传递
Integrated operational planning of hydrothermal power and natural gas systems with large scale storages 被引量:12
9
作者 Diego Mauricio OJEDA-ESTEYBAR Ricardo German RUBIO-BARROS Alberto VARGAS 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期299-313,共15页
The growing installation of natural gas fired power plants has increased the integration of natural gas and electricity sectors. This has driven the need investigate the interactions among them and to optimize energy ... The growing installation of natural gas fired power plants has increased the integration of natural gas and electricity sectors. This has driven the need investigate the interactions among them and to optimize energy resources management from a centralized planning perspective. Thus, a combined modeling of the reservoirs involved in electric power and gas systems and their locations on both networks are essential features to be considered in the operational planning of energy resources.This paper presents a modeling and optimization approach to the operational planning of electric power and natural gas systems, taking into account different energy storage facilities, such as water reservoirs, natural gas storages and line packs of pipelines. The proposed model takes advantage of captures both energy systems synergy and their associated networks. This approach identifies the interactions between the energy storage facilities and their economic impact over their optimal scheduling. The results show the benefits of an integrated operational planning of electric power and natural gas systems, the close interdependency between the energy resources stored in both systems, and the effects of a combined scheduling. 展开更多
关键词 Energy storage Hydrothermal scheduling Integrated operational planning Integrated energy systems natural gas
原文传递
Risk Assessment Index System of Natural Gas Industrial Chain in China 被引量:8
10
作者 Liu Yijun Lin Shanshan Li Zhiwei 《Petroleum Science》 SCIE CAS CSCD 2006年第4期57-62,共6页
This paper establishes a risk assessment index system for the natural gas industrial chain. China's natural gas industrial chain is entering a stage of rapid growth. In order to guarantee healthy development of the n... This paper establishes a risk assessment index system for the natural gas industrial chain. China's natural gas industrial chain is entering a stage of rapid growth. In order to guarantee healthy development of the natural gas industrial chain, it is urgent to establish a risk alert system, which is based on a risk assessment index system. First of all, the risks of the natural gas industrial chain are defined in the paper; then the risk factors are analyzed according to the present status of the natural gas industrial chain, and five categories of risk factors are summarized: resource risk, transport risk, marketing risk, risk of unbalanced chain links, and environment risk. The paper presents the principles of the risk assessment index system. The natural gas industrial chain risk assessment index system is established with four levels and forty-six risk indices. 展开更多
关键词 natural gas natural gas industrial chain risk analysis INDEX system
下载PDF
Modeling and scenario prediction of a natural gas demand system based on a system dynamics method 被引量:6
11
作者 Xian-Zhong Mu Guo-Hao Li Guang-Wen Hu 《Petroleum Science》 SCIE CAS CSCD 2018年第4期912-924,共13页
Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption struct... Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption structure of natural gas in China, we set up seven scenarios by changing some of the parameters of the model. The results showed that the total demand of natural gas would increase steadily year by year and reach in the range from 3600 to 4500 billion cubic meters in 2035. Furthermore, in terms of consumption structure, urban gas consumption would still be the largest term, followed by the gas consumption as industrial fuel, gas power generation and natural gas chemical industry. In addition, compared with the population growth, economic development still plays a dominant role in the natural gas demand growth, the impact of urbanization on urban gas consumption is significant, and the promotion of natural gas utilization technology can effectively reduce the total consumption of natural gas. 展开更多
关键词 natural gas demand system system dynamics Scenario prediction Consumption structure
下载PDF
Analysis of sensitivity to hydrate blockage risk in natural gas gathering pipeline
12
作者 Ao-Yang Zhang Meng Cai +4 位作者 Na Wei Hai-Tao Li Chao Zhang Jun Pei Xin-Wei Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2723-2733,共11页
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and... During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety. 展开更多
关键词 natural gas hydrates Gathering pipeline Temperature variation Hydrate formation rate Sensitivity analysis
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
13
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
A natural gas hydrate-oil-gas system in the Qilian Mountain permafrost area, northeast of Qinghai-Tibet Plateau 被引量:7
14
作者 Zhen-quan Lu Shi-qi Tang +6 位作者 Xiao-ling Luo Gang-yi Zhai Dong-wen Fan Hui Liu Ting Wang You-hai Zhu Rui Xiao 《China Geology》 2020年第4期511-523,共13页
Natural gas hydrate,oil and gas were all found together in the Qilian Mountain permafrost area,northeast of Qinghai-Tibet Plateau,China.They are closely associated with each other in space,but whether they are in any ... Natural gas hydrate,oil and gas were all found together in the Qilian Mountain permafrost area,northeast of Qinghai-Tibet Plateau,China.They are closely associated with each other in space,but whether they are in any genetic relations are unknown yet.In this paper,a hydrocarbon gas-generation series,gas-fluid migration series and hydrocarbon gas-accumulation series are analyzed to probe the spatial,temporal and genetic relationships among natural natural gas hydrate,oil and gas.The subsequent results show that natural gas hydrate,oil and gas actually form a natural gas hydrate-oil-gas system.Based on the Middle Jurassic and the Upper Triassic hydrocarbon gas-generation series,it is divided into four major sub-systems in the study area:(1)A conventional Upper Triassic gas-bearing sub-system with peak hydrocarbon gas-generation in the late Middle Jurassic;(2)a conventional Middle Jurassic oil-bearing sub-system with low to mature hydrocarbon gas-generation in the late Middle Jurassic;(3)a natural gas hydrate sub-system with main gas source from the Upper Triassic gas-bearing sub-system and minor gas source from the Middle Jurassic oil-bearing sub-system as well as little gas source from the Middle Jurassic coal-bed gas and the microbial gas;(4)a shallower gas sub-system with microbial alteration of the main gas source from the Upper Triassic gas-bearing sub-system.This natural gas hydrate-oil-gas system and its sub-systems are not only theoretical but also practical,and thus they will play an important role in the further exploration of natural gas hydrate,oil and gas,even other energy resources in the study area. 展开更多
关键词 natural gas hydrate-oil and gas system Hydrocarbon gas-generation series gas-fluid migration series Hydrocarbon gas-accumulation series Qilian Mountain permafrost Southwest China
下载PDF
Development,challenges and strategies of natural gas industry under carbon neutral target in China
15
作者 ZOU Caineng LIN Minjie +10 位作者 MA Feng LIU Hanlin YANG Zhi ZHANG Guosheng YANG Yichao GUAN Chunxiao LIANG Yingbo WANG Ying XIONG Bo YU Hao YU Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期476-497,共22页
In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas... In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption. 展开更多
关键词 carbon neutrality natural gas shale gas tight gas coalbed methane new energy energy transition
下载PDF
An Experimental Simulation of Load-Leveling Through Adsorption for Natural Gas Pipeline System 被引量:3
16
作者 周理 王怡琳 +1 位作者 陈海华 周亚平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第6期653-656,共4页
A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the loa... A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system. 展开更多
关键词 natural gas supply load-leveling ADSORPTION EXPERIMENT
下载PDF
Origin of condensate oil and natural gas in Bozhong 19-6 gas field,Bohai Bay Basin
17
作者 Jianyong Xu Wei Li 《Energy Geoscience》 EI 2024年第1期54-62,共9页
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin... The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt. 展开更多
关键词 Bozhong Sag natural gas Condensate oil Light hydrocarbon gas-source correlation Oil-source correlation
下载PDF
Tracing of natural gas migration by light hydrocarbons:A case study of the Dongsheng gas field in the Ordos Basin,NW China
18
作者 WU Xiaoqi NI Chunhua +3 位作者 MA Liangbang WANG Fubin JIA Huichong WANG Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期307-319,共13页
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char... Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents. 展开更多
关键词 Ordos Basin Dongsheng gas field Permian Lower Shihezi Formation light hydrocarbon compounds MATURITY natural gas origin migration phase state diffusion loss
下载PDF
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
19
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Development of an integrated dynamic model for supply security and resilience analysis of natural gas pipeline network systems 被引量:2
20
作者 Huai Su Enrico Zio +4 位作者 Zong-Jie Zhang Chang-Zheng Xiong Qian-Sheng Dai Qing-Wei Wu Jin-Jun Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期761-773,共13页
An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage faciliti... An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective. 展开更多
关键词 natural gas pipeline networks Dynamic modeling State space model Graph theory Resilience of natural gas supply
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部