Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P...Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.展开更多
In order to study features of rock–water interaction, a self-developed experimental system called Intelligent Testing System for Water Absorption in Deep Soft Rocks(ITSWADSR) was utilized to analyze the hydrophilic b...In order to study features of rock–water interaction, a self-developed experimental system called Intelligent Testing System for Water Absorption in Deep Soft Rocks(ITSWADSR) was utilized to analyze the hydrophilic behaviors of natural soft rock at high stress state. Combining X-ray diffraction and mercury injection test, main influencing factors on hydrophilic characteristics were studied. According to the results, it could be concluded as the following:(1) the effective porosity, and the content of illite, illite/smectite formation(S = 5%) and kaolinite have positive correlation with the water absorption capacity of rock; meanwhile, the initial moisture content, fractal dimension of effective pores, illite/smectite formation(S = 30%) and chlorite present negative correlation;(2) among the positive factors, the ascending order is kaolinite, illite/smectite formation(S = 5%) and illite;(3) the descending order among the negative factors are chlorite, illite/smectite formation(S = 30%) and fractal dimension of the effective pores;(4) influence of effective porosity on the pressurized water absorbing capacity of rock is minimal, while it is maximal in the process of no pressurized water absorption.展开更多
Uniaxial compression tests (UCTs) on 34 naturally fractured marble samples taken from the transportation tunnels of Jinping I1 hydropower station were carried out using the MTS815 Flex test GT rock testing system. R...Uniaxial compression tests (UCTs) on 34 naturally fractured marble samples taken from the transportation tunnels of Jinping I1 hydropower station were carried out using the MTS815 Flex test GT rock testing system. Rockburst proneness index WET is determined for the marble samples with the UCTs. According to the number, size and spatial structure characteristics of the internal natural fractures of the marble samples, fractures are basically divided into 4 types, namely, single fracture, parallel fracture, intersectant fracture and mixed fracture. The mechanical properties of naturally fractured rocks (4 types) are analyzed and compared with those of intact rock samples (without natural fractures). Experimental results indicate that failure characteristics of fractured rocks are appreciably controlled by fracture distribution or fracture patterns. In comparison with intact rocks, the failure of fractured marbles is a locally progressive failure process and finally rocks fail abruptly. Statistically, the uniaxial compressive strengths (UCSs) of rocks with single, parallel, intersectant and mixed fractures are 0.72, 0.69, 0.59 and 0.46 times those of the intact rocks, respectively. However, the elastic modulus of the fractured Yantang marbles is generally not different from that of intact rocks. But the elastic moduli of Baishan marble with single, intersectant and mixed fractures are 0.61, 0.62 and 0.45 times those of intact rocks, respectively. Experimental results also indicate that WEt of fractured marbles is generally smaller than that of intact marbles, which implies that rockburst intensity of fractured marble in field may be controlled to some extent. In addition, the bearing capacity of surrounding rocks is also reduced, thus the surrounding rocks should be supported or reinforced timely according to practical conditions.展开更多
The geochemistry of natural waters in the Changtang Nature Reserve,northern Tibet,can help us understand the geology of catchments,and provide additional insight in surface processes that influence water chemistry suc...The geochemistry of natural waters in the Changtang Nature Reserve,northern Tibet,can help us understand the geology of catchments,and provide additional insight in surface processes that influence water chemistry such as rock weathering on the Qinghai–Tibet Plateau.However,severe natural conditions are responsible for a lack of scientific data for this area.This study represents the first investigation of the chemical composition of surface waters and weathering effects in two lake basins in the reserve(Lake Dogaicoring Qiangco and Lake Longwei Co).The results indicate that total dissolved solids(TDS)in the two lakes are significantly higher than in other gauged lakes on the Qinghai–Tibet Plateau,reaching 20–40 g/L,and that TDS of the tectonic lake(Lake Dogaicoring Qiangco)is significantly higher than that of the barrier lake(Lake Longwei Co).Na+and Cl-are the dominant ions in the lake waters as well as in the glacier-fed lake inflows,with chemical compositions mainly affected by halite weathering.In contrast,ion contents of inflowing rivers fed by nearby runoff are lower and concentrations of dominant ions are not significant.Evaporite,silicate,and carbonate weathering has relatively equal effects on these rivers.Due to their limited scope,small streams near the lakes are less affected by carbonate than by silicate weathering.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.
文摘In order to study features of rock–water interaction, a self-developed experimental system called Intelligent Testing System for Water Absorption in Deep Soft Rocks(ITSWADSR) was utilized to analyze the hydrophilic behaviors of natural soft rock at high stress state. Combining X-ray diffraction and mercury injection test, main influencing factors on hydrophilic characteristics were studied. According to the results, it could be concluded as the following:(1) the effective porosity, and the content of illite, illite/smectite formation(S = 5%) and kaolinite have positive correlation with the water absorption capacity of rock; meanwhile, the initial moisture content, fractal dimension of effective pores, illite/smectite formation(S = 30%) and chlorite present negative correlation;(2) among the positive factors, the ascending order is kaolinite, illite/smectite formation(S = 5%) and illite;(3) the descending order among the negative factors are chlorite, illite/smectite formation(S = 30%) and fractal dimension of the effective pores;(4) influence of effective porosity on the pressurized water absorbing capacity of rock is minimal, while it is maximal in the process of no pressurized water absorption.
基金Supported by the National Basic Research Program of China(973Program)(2011CB201201,2010CB732002)the National Natural Science Foundation of China(50974091)+1 种基金Special Foundation for Nationwide Outstanding Doctoral Dissertation Authors in Colleges and Universities(2010030)the Program for New Century Excellent Talents in University(NCET-09-0726)
文摘Uniaxial compression tests (UCTs) on 34 naturally fractured marble samples taken from the transportation tunnels of Jinping I1 hydropower station were carried out using the MTS815 Flex test GT rock testing system. Rockburst proneness index WET is determined for the marble samples with the UCTs. According to the number, size and spatial structure characteristics of the internal natural fractures of the marble samples, fractures are basically divided into 4 types, namely, single fracture, parallel fracture, intersectant fracture and mixed fracture. The mechanical properties of naturally fractured rocks (4 types) are analyzed and compared with those of intact rock samples (without natural fractures). Experimental results indicate that failure characteristics of fractured rocks are appreciably controlled by fracture distribution or fracture patterns. In comparison with intact rocks, the failure of fractured marbles is a locally progressive failure process and finally rocks fail abruptly. Statistically, the uniaxial compressive strengths (UCSs) of rocks with single, parallel, intersectant and mixed fractures are 0.72, 0.69, 0.59 and 0.46 times those of the intact rocks, respectively. However, the elastic modulus of the fractured Yantang marbles is generally not different from that of intact rocks. But the elastic moduli of Baishan marble with single, intersectant and mixed fractures are 0.61, 0.62 and 0.45 times those of intact rocks, respectively. Experimental results also indicate that WEt of fractured marbles is generally smaller than that of intact marbles, which implies that rockburst intensity of fractured marble in field may be controlled to some extent. In addition, the bearing capacity of surrounding rocks is also reduced, thus the surrounding rocks should be supported or reinforced timely according to practical conditions.
基金supported by the National Natural Science Foundation of China(Nos.41190080,41371058,and 41201035)the National Science Foundation of China(No.2012FY111400)the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDB05030400)
文摘The geochemistry of natural waters in the Changtang Nature Reserve,northern Tibet,can help us understand the geology of catchments,and provide additional insight in surface processes that influence water chemistry such as rock weathering on the Qinghai–Tibet Plateau.However,severe natural conditions are responsible for a lack of scientific data for this area.This study represents the first investigation of the chemical composition of surface waters and weathering effects in two lake basins in the reserve(Lake Dogaicoring Qiangco and Lake Longwei Co).The results indicate that total dissolved solids(TDS)in the two lakes are significantly higher than in other gauged lakes on the Qinghai–Tibet Plateau,reaching 20–40 g/L,and that TDS of the tectonic lake(Lake Dogaicoring Qiangco)is significantly higher than that of the barrier lake(Lake Longwei Co).Na+and Cl-are the dominant ions in the lake waters as well as in the glacier-fed lake inflows,with chemical compositions mainly affected by halite weathering.In contrast,ion contents of inflowing rivers fed by nearby runoff are lower and concentrations of dominant ions are not significant.Evaporite,silicate,and carbonate weathering has relatively equal effects on these rivers.Due to their limited scope,small streams near the lakes are less affected by carbonate than by silicate weathering.