期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Experimental study of two saturated natural soils and their saturated remoulded soils under three consolidated undrained stress paths 被引量:1
1
作者 Mingjing JIANG Haijun HU +1 位作者 Jianbing PENG Serge LEROUEIL 《Frontiers of Structural and Civil Engineering》 SCIE EI 2011年第2期225-238,共14页
In this paper,an experimental investigation is conducted to study the mechanical behavior of saturated natural loess,saturated natural filling in ground fissure and their corresponding saturated remoulded soils under ... In this paper,an experimental investigation is conducted to study the mechanical behavior of saturated natural loess,saturated natural filling in ground fissure and their corresponding saturated remoulded soils under three consolidated undrained triaxial stress tests,namely,conventional triaxial compression test(CTC),triaxial compression test(TC)and reduced triaxial compression test(RTC).The test results show that stress-strain relation,i.e.strain-softening or strain-hardening,is remarkably influenced by the structure,void ratio,stress path and confining pressure.Natural structure,high void ratio,TC stress path,RTC stress path and low confining pressures are favorable factors leading to strain-softening.Excess pore pressure during shearing is significantly affected by stress path.The tested soils are different from loose sand on character of strain-softening and are different from common clay on excess pore water pressure behavior.The critical states in p′-q space in CTC,TC and RTC tests almost lie on one line,which indicates that the critical state is independent of the above stress paths.As for remoulded loess or remoulded filling,the critical state line(CSL)and isotropic consolidation line(ICL)in e-log p′space are almost straight,while for natural loess or natural filling,in e-log p′space there is a turning point on the CSL,which is similar to the ICL. 展开更多
关键词 stress paths static liquefaction natural soil remoulded soil LOESS structure total strength indices excess pore pressure
原文传递
Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil 被引量:3
2
作者 Aref al-Swaidani Ibrahim Hammoud Ayman Meziab 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期714-725,共12页
Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastruc... Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed. 展开更多
关键词 natural pozzolana Clayey soil stabilization CompactionCalifornia bearing ratio (CBR) Linear shrinkage
下载PDF
Behavior of diatomaceous soil in lacustrine deposits of Bogota, Colombia 被引量:5
3
作者 Bernardo Caicedo Cristhian Mendoza +1 位作者 Fernando López Arcesio Lizcano 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第2期367-379,共13页
This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia,the ... This work presents a study on the behaviors of diatomaceous soils. Although studies are rarely reported on these soils, they have been identified in Mexico City, the Sea of Japan, the northeast coast of Australia,the equatorial Pacific, and the lacustrine deposit of Bogota(Colombia), among other locations. Features of this kind of soil include high friction angle, high initial void ratio, high compressibility index, high liquid limit, and low density. Some of these features are counterintuitive from a classical soil mechanics viewpoint. To understand the geotechnical properties of the diatomaceous soil, a comprehensive experimental plan consisting of more than 2400 tests was performed, including physical tests such as grain size distribution, Atterberg limits, density of solid particles, and organic matter content; and mechanical tests such as oedometric compression tests, unconfined compression tests, and triaxial tests.Laboratory tests were complemented with scanning electron microscope(SEM) observations to evaluate the microstructure of the soil. The test results show that there is an increase in liquid limit with increasing diatomaceous content, and the friction angle also increases with increasing diatomaceous content. In addition, several practical correlations were proposed for this soil type for shear strength mobilization and intrinsic compression line. Finally, useful correlations were presented, such as the relationship between the state consistency and the undrained shear strength, the friction angle and the liquid limit, the void ratio at 100 kPa and the liquid limit, the plasticity index and the diatomaceous content, among others. 展开更多
关键词 Diatomaceous soil Soft soils COMPRESSIBILITY Friction angle natural soil
下载PDF
Practical Engineering Behavior of Egyptian Collapsible Soils, Laboratory and <i>In-Situ</i>Experimental Study
4
作者 Naema A. Ali 《Open Journal of Civil Engineering》 2021年第3期290-300,共11页
In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</spa... In many sites on Egypt desert roads collapsible soils <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> broadly classified as a problematic soils contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> silty fine sand which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">cemented with low density and low degree of saturation which is susceptible to a large and sudden reduction in their v</span><span style="font-family:Verdana;">olume upon inundation, with or without vibration in its stress. Four sites have been studied for new urban</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">roads and industry work sits, related to increase in natural water content</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> These soils go through radical rearrangement of their particles, causing sudden changes in the stress-deformation behavior which caus</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential settlement of foundation and roads. This chan</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ge in volume can lead to foundation failures and worth of damages under ground public facilities and infrastructure. In this study, the search program </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">developed to establish their different behavior under wetting in two phase</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> field and laboratory work. The obtained results are useful in mapping the trend of the factors affect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in assessing soil collapsibility rate or collapse potentials which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">observed in construction with volume change problems. The major factors observed are the natural structure skeleton of the soil particle and its grain size and mechanism of soil sedimentation. The field collapse potentials value assigned for these tested sites along Alexandria</span><span style="font-family:Verdana;">—Cairo desert road indicated that the field measured collapsibility potentials are smaller than those measured on the same extracted undisturbed samples in laboratory by 15%, which can be save</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in coast, change in proposed collapsibility improvement method and change in select foundation type. Also, field tests evaluate the collapsibility rate with time and highlight that environmental history and natural soil structure in field are the important factors affected on these soil collapse, and also, knowledgeable by collapsible soils during wetting in these sites studied.</span></span></span> 展开更多
关键词 natural Water Content natural soil Structure Collapsibility Properties Field Test
下载PDF
Review of collapse triggering mechanism of collapsible soils due towetting 被引量:21
5
作者 Ping Li Sai Vanapalli Tonglu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期256-274,共19页
Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t... Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications. 展开更多
关键词 Collapse mechanism Microstructure Constitutive relationships Compacted soils natural loess soils Elastoplastic models Yield surface Structural strength
下载PDF
Development of natural treatment system consisting of black soil and Kentucky bluegrass for the post-treatment of anaerobically digested strong wastewater
6
作者 Xiaochen Chen Kensuke Fukushi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第3期44-50,共7页
To develop a sound post-treatment process for anaerobically-digested strong wastewater,a novel natural treatment system comprising two units is put forward.The first unit,a trickling filter,provides for further reduct... To develop a sound post-treatment process for anaerobically-digested strong wastewater,a novel natural treatment system comprising two units is put forward.The first unit,a trickling filter,provides for further reduction of biochemical oxygen demand and adjustable nitrification.The subsequent soil–plant unit aims at removing and recovering the nutrients nitrogen(N),phosphorus(P)and potassium(K).As a lab-scale feasibility study,a soil column test was conducted,in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater.After a long-term operation,the nitrification function was well established in the top layers,despite the need for an improved denitrification process prior to discharge.P and K were retained by the soil through distinct mechanisms.Since they either partially or totally remained in plant-available forms in the soil,indirect nutrient reuse could be achieved.As for Kentucky bluegrass,it displayed better growth status when receiving wastewater,with direct recovery of 8%,6% and 14% of input N,P and K,respectively.Furthermore,the indispensable role of Kentucky bluegrass for better treatment performance was proved,as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere.After further upgrade,the proposed system is expected to become a new solution for strong wastewater pollution. 展开更多
关键词 natural treatment system Black soil Kentucky bluegrass Strong wastewater soil column test
原文传递
Study of cadmium(Cd)-induced oxidative stress in Eisenia fetida based on mathematical modelling 被引量:1
7
作者 Yucui NING Haoran ZHOU +4 位作者 Enze WANG Congmin JIN Ying YU Xu CAO Dongxing ZHOU 《Pedosphere》 SCIE CAS CSCD 2021年第3期460-470,共11页
As a sensitive biological indicator,earthworms are widely used to monitor various pollutants of soil and provide an early warning for soil pollution.However,because many indices are involved in the exposure-induced ox... As a sensitive biological indicator,earthworms are widely used to monitor various pollutants of soil and provide an early warning for soil pollution.However,because many indices are involved in the exposure-induced oxidative stress response,practical applications of these indices are quite inconvenient.Therefore,it is appropriate to investigate the key monitoring index for use in early warning and pollution monitoring.Using Eisenia fetida as an experimental model in an indoor simulation experiment,the mathematical modelling of the effect on oxidative stress in earthworms under cadmium(Cd)stress was studied.The test lasted 40 d,with the removal of one earthworm every 10 d.The Cd2+concentration gradient was set as 0,1,10,20,100,200,400,and 800 mg kg^(-1) dry weight.The earthworms were divided into two sections from the clitellum for the determination of total protein(TP)and peroxidase(POD),superoxide dismutase(SOD),glutathione-S-transferase(GST),glutathione peroxidase(GPX),catalase(CAT),malondialdehyde(MDA),and acetylcholinesterase(AChE)activities.Results showed that POD was the key index of oxidative stress in head tissues after 10 d of exposure,TP was the key index at 20 d,and POD became the key index again at 30 and 40 d.By contrast,in tail tissues,MDA and SOD were the key indices at an exposure time of 10 d,GPX at 20 d,CAT and TP at 30 d,and POD and MDA at 40 d.These results contribute to establishing a scientific method for ecotoxicological diagnosis and revealing the mechanism of soil Cd toxicity. 展开更多
关键词 biological indicator BIOMARKER EARTHWORM factor analysis heavy metal pollution monitoring natural soil soil pollutant TOPSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部