Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6...Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.展开更多
To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were us...To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.展开更多
In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures a...In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures are studied.The research results indicate that:① Mosaic distribution of low-velocity bodies and high-velocity bodies, especially the existence of high-velocity bodies with large size in crust are the common basis of development of thetwo earthquake sequences. ② Scale, depth, and heterogeneity of high-velocity and low-velocity bodies are theimportant factors to effect the characteristic of earthquake sequences. ③ The depth of the high-velocity body inTangshan area is less than that in Xingtai area, which is the principal reason why the dominant focal depth and thebiggest focal depth of Tangshan earthquake sequence are less than Xingtai's. ④ The depth of the high-velocitybodies in Ninghe area is more than that in Tangshan-Luanxian area, which lead to the biggest magnitude and epicentral intensity are lower. These results could be helpful for predicting the main shock of strong swarm-typeearthquakes and later strong aftershocks.展开更多
Based on 294 earthquake sequences with magnitude greater than or equal to 5.0 occurred in Chinese mainland since 1970, the spatial distribution features of sequence types have been studied. In southwestern China, it t...Based on 294 earthquake sequences with magnitude greater than or equal to 5.0 occurred in Chinese mainland since 1970, the spatial distribution features of sequence types have been studied. In southwestern China, it takes mainshock-aftershock sequence type (MAT) as the major in Chuan-Dian rhombic block and concerned Xianshuihe-Anninghe-Xiaojiang seismic belt, as well as in Jinshajiang-Honghe seismic belt. Multiple mainshock type (MMT) mainly distributes in western Yunnan, and Longlin and Lancang areas in Tengchong-Baoshan block in west of Nujiang-Lancangjiang fault zone. A few isolated earthquake type (IET) mainly occurred in northwestern Sichuan and there is no IET occurred in Yunnan region. In northwestern China, it takes mainshock-aftershock sequence type (MAT) as the major in west segment of South Tianshan in Xinjiang region. Some MMT also occurred in this area in the intersection of Kalpin block and the Puchang fault zone. It takes IET as the major in middle Tianshan in Xinjiang. Along the Qilianshan seismic belt, most of sequences are MAT. In Qinghai region, it takes MAT as the major, but the regional feature of the spatial distribution of sequence types is not very clear. In North China, it takes MAT as the major in Yinshan-Yanshan-Bohai seismic belt, north edge of North China, and in Hebei plain seismic belt, as well as in sub-plate of lower river area of Yangtze River. In intersection of north segment of Shanxi seismic belt and the NW-trending Yinshan-Yanshan-Bohai seismic belt, there are several moderate or strong MMT with magnitude from 5.0 to 6.0 occurred. In south of North China around the latitude line of 35°N, it takes IET as the major. The spatial distribution of sequence types is relevant to the patterns of tectonic movements. MAT is mostly produced by the ruptures of locked units or asperities or the neonatal separating segments inside the fault zones. MMT is generally relevant to the conjugate structures or intersection of many tectonic settings. Further extension of simple fault often produces IET. Spatial distribution of sequence types is also correlative to the regional and deep environment of crustal medium to some extent. MAT mainly distributes in high velocity area in upper crust or in the transition zone between high velocity area and low velocity area, MMT mostly occurred in the low velocity area in upper crust.展开更多
The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and af...The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.展开更多
The sequence characteristics and focal mechanism solution of the Jiashi, Xinjiang strong earthquake swarm are analyzed and studied in this paper. The result shows that before the M S=6.6 earthquake, value h o...The sequence characteristics and focal mechanism solution of the Jiashi, Xinjiang strong earthquake swarm are analyzed and studied in this paper. The result shows that before the M S=6.6 earthquake, value h of sequence frequency attenuation coefficient was less than 1, then value h was more than 1. Before occurrence of M S6.0 earthquakes the energy is released either in a continuously strengthened way or a sharply strengthened way, and before M S5.0 earthquakes the sequence frequency shows calm. The study on the focal mechanism solution of the strong earthquake swarm shows that the source faults are mainly in a right lateral, strike slip way and the faults have characteristics of tensor shear.展开更多
The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake seque...The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake sequence, it has been found that the focal fault plane shows a special image of grading expansion along the direction of strike and adjustment along the dip direction respectively. With the consideration of strike, dip and slip directions of focal mechanism, we have confirmed that Ibaraki earthquake belongs to a thrust fault earthquake occurred under the Japan Trench. The cause of the earthquake sequence is discussed in the paper. The study on the temporal-spatial distribution of the earthquake sequence with a time-scale between the year-scale spatial geodetic data and the second-scale moment tensor of the strong earthquake has indicated the dynamic process of Pacific Plate subduction under the Eurasia Plate. According to the average slip distance of earthquake and the velocity of plate movement, it is predicted that a strong earthquake might occur in recent years.展开更多
Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi ea...Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi earthquake sequence using the HypoDD and CAP methods.Based on our results,our main conclusions are as follows:(1)the M_(S)6.4 Yangbi earthquake sequence is a typical foreshock-mainshock-aftershock sequence.The fore-shocks of the first two stages have the obvious fronts of migration and their migration rate increased gradually.There was no apparent front of migration during the third stage,and the occurrence of the mainshock was related to stress triggering from a M5.3 foreshock.We tentatively speculate that the rupture pattern of the Yangbi earthquake sequence conforms to the cascading-rupture model;and(2)the main fault of the M_(S)6.4 Yangbi earthquake sequence is a NW-trending right-lateral strike-slip fault.As time progressed,a minor conjugate aftershock belt formed at the northwest end of this fault,and a dendritic branching structure emerged in the southern fault segment,showing a complex seismogenic fault structure.We suggested that the fault of the Yangbi earthquake sequence may be a young sub-fault of the Weixi-Weishan fault.展开更多
The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake locat...The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.展开更多
Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine th...Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine the depth of these micro-earthquakes provided accurate relocation of aftershocks with a reference set of "ground truth(GT)events".展开更多
In 1997 - 2003, 27 earthquakes with M≥ 5.0 occurred in the Jiashi-Bachu area of Xinjiang. It was a rare strong earthquake swarm activity. The earthquake swarm has three time segments of activity with different magnit...In 1997 - 2003, 27 earthquakes with M≥ 5.0 occurred in the Jiashi-Bachu area of Xinjiang. It was a rare strong earthquake swarm activity. The earthquake swarm has three time segments of activity with different magnitudes in the years 1997, 1998 and 2003. In different time segments, the seismic activity showed strengthenin-qguiet changes in various degrees before earthquakes with M ≥ 5.0. In order to delimitate effectively the precursory meaning of the clustering (strengthening) quiet change in sequence and to seek the time criterion for impending prediction, the nonlinear characteristics of seismic activity have been used to analyze the time structure characteristics of the earthquake swarm sequence, and further to forecast the development tendency of earthquake sequences in the future. Using the sequence catalogue recorded by the Kashi Station, and taking the earthquakes with Ms≥ 5.0 in the sequence as the starting point and the next earthquake with Ms = 5.0 as the end, statistical analysis has been performed on the time structure relations of the earthquake sequence in different stages. The main results are as follows: (1) Before the major earthquakes with M ≥ 5.0 in the swarm sequence, the time variation coefficient (δ-value) has abnormal demonstrations to different degrees. (2) Within 10 days after δ= 1, occurrence of earthquakes with M ≥ 5.0 in the swarm is very possible. (3) The time variation coefficient has three types of change. (4) The change process before earthquakes with M5.0 is similar to that before earthquakes with M6.0, with little difference in the threshold value. In the earthquake swarm sequence, it is difficult to delimitate accurately the attribute of the current sequences (foreshock or aftershock sequence) and to judge the magnitude of the follow-up earthquake by δ-value. We can only make the judgment that earthquakes with M5.0 are likely to occur in the sequence. (5) The critical clustering characteristics of the sequence are hierarchical. Only corresponding to a certain magnitude can the sequence have the variation state of critical clustering. (6) The coefficient of the time variation has a clear meaning in physics. After the clustering-quiet state of earthquake activity has appeared, it can describe clearly the randomness of the seismogenic system. Furthermore, it can efficiently clarify whether or not the clustering quiescence variation is of some prognostic meaning. In the case that the earthquake frequency attenuation is essentially normal (h 〉 1 ) and there is no remarkable clustering-quiescence state, it is still possible to discover the abnormal change of the sequence from the time variation coefficient. On the contrary, in the later period of swarm activity, after the appearance of many seismic quiescence phenomena, this coefficient did not appear abnormally, even when h 〈 1, suggesting that the δ-value diagnosis is more universal.展开更多
Within a time distribution of magnitude values, before any mainshock some earthquake triggering patterns with several features develop, under tectonic processes’ influence, through which it is possible to early ident...Within a time distribution of magnitude values, before any mainshock some earthquake triggering patterns with several features develop, under tectonic processes’ influence, through which it is possible to early identify the preparation phase of big earthquakes. The purpose of this article was to identify and classify the warning patterns that develop before a big earthquake by considering space-time seismicity variations. The methodological approach adopted was of graphical type, based on procedures of technical analysis currently used to estimate the financial markets. In the initial phase of the study we have analyzed the seismic sequences types described in the bibliography (type 1: foreshocks-mainshock-aftershocks, type 2: mainshock-aftershock;type 3: swarm) and the main structure of the seismic cycle, within which maximum and minimum magnitude values characterize the pattern that it develops until the main event changes. Then, we assessed the position of foreshocks, mainshock and aftershocks within the seismic cycle in order to identify the warning pattern that characterized the exact time when the energy emission occurs. As to the evolution normally shown over time, we have grouped the warning patterns in 2 categories: 1) progressive earthquake pattern;2) flash earthquake pattern. Finally, we have made a classification of the warning pattern related to the fluctuations of maximum and minimum magnitude values, compared its form with the mainshock’s focal mechanism and suggested some graphic procedures in order to estimate the mainshock magnitude value associated with each warning pattern. The results we obtained unquestionably allow a better comprehension of preparation process of a large earthquake, improving the earthquakes forecasting probability in the next future.展开更多
Through the accurate determination of hypocenter location, the measurement of the main focal mechanism solutions and the analyses of time dependent processes for Sichuan Mianzhu earthquake sequence with M S=5 0 occurr...Through the accurate determination of hypocenter location, the measurement of the main focal mechanism solutions and the analyses of time dependent processes for Sichuan Mianzhu earthquake sequence with M S=5 0 occurred along the middle segment of Longmenshan fault zone on November 30, 1999, the distribution of focal depth section, the stress release and seismicity features are given to reveal the earthquake-generating structure of the earthquake sequence. The obtained results show the activity features for this sequence as follows: ① There is no obvious foreshock, the accumulated strain energy releases in nearly pulse way, fluctuation of the seismic activity level is not quite evident during the duration of the sequence, and the statistical relation between the large events and the small events is less compatible with the traditional G-R estimation; ② The epicenters of the earthquake sequence are not distributed on the main Longmenshan piedmont faults emerging out ground, but near the hidden Longmenshan piedmont faults. The direction of epicenter distribution is not very coincident with the fault strikes. The microscopic epicenters are relatively far from the macroscopic epicenters. The focal depths range from 5km to 16km; ③ The fractures of focal fault plane with the NE strike appear out the strike-slip displacement with a few overthrust components under the major principal compressive stress of NNE direction. From these, we consider it should be paid more attentions to the underground hidden faults near the ground fault zone on a large scale for their generating earthquake risk.展开更多
The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of gre...The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.展开更多
The state of the stress fields in the source region is analysed systematically, on the basis of the focal mechanismsof 167 events with Ms≥4. 0 of Tangshan sequence and 163 moderate-small events of Lancang sequence re...The state of the stress fields in the source region is analysed systematically, on the basis of the focal mechanismsof 167 events with Ms≥4. 0 of Tangshan sequence and 163 moderate-small events of Lancang sequence respectively. The result indicates that the directions of the stress field in the source region are generally stable and thevariation is not obvious after the occurrence of strong shock. The dominant orientations of focal mechanisms ofthe aftershocks are consistent with that of the mainshock, there is still a small difference between some mechanisms of aftershocks and the mechanism of mainshock, and the difference decreases as time goes on. The numbers of solutions with dominant direction of Tangshan and Lancang sequences are similar to each other, it indicates that the controls of the strong earthquake sequences from the tectonic stress field are similar to each othertoo. Through the hierarchical clustering analysis of focal mechanism,it is found that the number of clusters ofTangshan sequence is larger than that of Lancang sequence,and their orientations are relatively disordered. Itmay be the cause that the tectonics in the Tangshan region are more complicated than those in the Lancang region.展开更多
A total of 6 earthquake sequences that occurred in the Kuril Islands region in 1964-1976 has been collected and their characteristics have been analyzed. When these sequences are judged from the spatial relation betw...A total of 6 earthquake sequences that occurred in the Kuril Islands region in 1964-1976 has been collected and their characteristics have been analyzed. When these sequences are judged from the spatial relation between their source distribution and the subduction zone, all of them belong to plate boundary earthquake sequences. The parameters of 5 ones among these sequences, which are located just in the subduction zone, are in fair agreement. For these 5 sequences, the major axis of epicenter distribution area is longer; the ratio of major axis to minor axis is high; the focal depths have a greater range; the directions of dip are consistent with the direction of subduction; the dip angles are of moderate value. It is estimated that the only exception is related to the low accuracy of data in the early stage.展开更多
Based on the research on 108 strictly selected earthquake sequences since 1965 in the Chinese mainland, why the magnitude structures of most of these sequences are not in accord with the G R relation has been analyze...Based on the research on 108 strictly selected earthquake sequences since 1965 in the Chinese mainland, why the magnitude structures of most of these sequences are not in accord with the G R relation has been analyzed and the fitting method with the division of the magnitude structure for the earthquake sequences has been suggested. The characteristic values of this method in the high magnitude interval have mainly been researched, and characteristic magnitude percent f and the slope ratio b 2 of the high magnitude interval, which are different for various sequence types are most obvious. The results show that the N M patterns of magnitude structures for 52.8% earthquake sequences are not in accord with the G R relation from the magnitude less than 80% of the maximum one and that for only 18.5% earthquake sequences show the decrease trend in the high magnitude interval. When b 2 <0 or 0 b 2 <3.0 and f is less, the strong aftershocks in the earthquake sequences are less; when b 2 3.0 for the sequence, several strong aftershocks often occurred; when 0b 2<3.0 and f is bigger, aftershocks with middle magnitude are more in these sequences.展开更多
On the basis of about 300 earthquake wave forms observed in the Shidian MS=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal pa...On the basis of about 300 earthquake wave forms observed in the Shidian MS=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5~5.3, the seis-mic moments are 1010~1016 N?m, the corner frequencies are 0.2~0.8 Hz, radii of the focal rupture are 200~2 500 m and the stress drops are 0.1×105~20×105Pa. Through the statistical analyses of variation of corner frequency fc and stress drop ?σ with time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops ?σ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of av-erage corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses.展开更多
According to the rupture dynamics of earthquakes, variations of the apparent stress and the difference between the static stress drop and the dynamic stress drop during the rupture of earthquakes are analyzed for the ...According to the rupture dynamics of earthquakes, variations of the apparent stress and the difference between the static stress drop and the dynamic stress drop during the rupture of earthquakes are analyzed for the July 20, 1995 ML=4.1 Shacheng, Hebei, China, earthquake sequence. Results obtained show that the apparent stress for main-shock is about 5 MPa, and the average apparent stress for aftershocks 0.047 MPa. During the rupture of the main-shock, the dynamic stress drop is approximately 1.6 times greater than the static stress drop with the difference of nearly 2.7 MPa. The dynamic stress drop is less than the static stress drop for all aftershocks with the average difference of -0.75 MPa. Therefore, when the mainshock occurs the final stress on the focal fault is higher than the dynamic frictional stress, corresponding to that the fault is abruptly locked. When the aftershocks occur the final stress on the focal fault is lower than the dynamic frictional stress, corresponding to that the fault overshoots. It can be seen from the above results that there could be some differences in the physic processes between the mainshock and the aftershocks.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.sU2139205,41774011,41874011)the National Key Research and Development Program of China(Grant No.2018YFC1503605)。
文摘Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
基金supported by National Science Foundation of China(41574047)National Key R&D Program of China(2018YFC150330501)
文摘To reveal the geometry of the seismogenic structure of the Aug. 8, 2017 M_S 7.0 Jiuzhaigou earthquake in northern Sichuan,data from the regional seismic network from the time of the main event to Oct. 31, 2017 were used to relocate the earthquake sequence by the tomoDD program, and the focal mechanism solutions and centroid depths of the M_L ≥ 3.5 events in the sequence were determined using the CAP waveform inversion method. Further, the segmental tectonic deformation characteristics of the seismogenic faults were analyzed preliminarily by using strain rosettes and areal strains(As). The results indicate:(1) The relocated M_S 7.0 Jiuzhaigou earthquake sequence displays a narrow ~ 38 km long NNW-SSE-trending zone between the NW-striking Tazang Fault and the nearly NSstriking Minjiang Fault, two branches of the East Kunlun Fault Zone. The spatial distribution of the sequence is narrow and deep for the southern segment, and relatively wide and shallow for the northern segment. The initial rupture depth of the mainshock is 12.5 km, the dominant depth range of the aftershock sequence is between 0 and 10 km with an average depth of 6.7 km. The mainshock epicenter is located in the middle of the aftershock region, showing a bilateral rupture behavior. The centroid depths of 32 M_L ≥ 3.5 events range from 3 to 12 km with a mean of about 7.3 km, consistent with the predominant focal depth of the whole sequence.(2) The geometric structure of the seismogenic fault on the southern section of the aftershock area(south of the mainshock) is relatively simple, with overall strike of ~150° and dip angle ~75°, but the dip angle and dip-orientation exhibit some variation along the segment. The seismogenic structure on the northern segment is more complicated; several faults, including the Minjiang Fault, may be responsible for the aftershock activities. The overall strike of this section is ~159° and dip angle is ~59°, illustrating a certain clockwise rotation and a smaller dip angle than the southern segment. The differences between the two segments demonstrate variation of the geometric structure along the seismogenic faults.(3) The focal mechanism solutions of 32 M_L ≥ 3.5 events in the earthquake sequence have obvious segmental characteristics. Strike-slip earthquakes are dominant on the southern segment, while 50% of events on the northern segment are thrusting and oblique thrusting earthquakes, revealing significant differences in the kinematic features of the seismogenic faults between the two segments.(4) The strain rosettes for the mainshock and the entire sequence of 31 M_L ≥ 3.5 aftershocks correspond to strike-slip type with NWW-SEE compressional white lobes and NNE-SSW extensional black lobes of nearly similar size. The strain rosette and As value of the entire sequence of 22 M_L ≥ 3.5 events on the southern segment are the same as those of the M_S 7.0 mainshock,indicating that the tectonic deformation here is strike-slip. However, the strain rosette of the entire sequence of 10 M_L ≥ 3.5 events on the northern segment show prominent white compressional lobes and small black extensional lobes, and the related As value is up to 0.52,indicating that the tectonic deformation of this segment is oblique thrusting with a certain strike-slip component. Differences between the two segments all reveal distinctly obvious segmental characteristics of the tectonic deformation of the seismogenic faults for the Jiuzhaigou earthquake sequence.
文摘In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures are studied.The research results indicate that:① Mosaic distribution of low-velocity bodies and high-velocity bodies, especially the existence of high-velocity bodies with large size in crust are the common basis of development of thetwo earthquake sequences. ② Scale, depth, and heterogeneity of high-velocity and low-velocity bodies are theimportant factors to effect the characteristic of earthquake sequences. ③ The depth of the high-velocity body inTangshan area is less than that in Xingtai area, which is the principal reason why the dominant focal depth and thebiggest focal depth of Tangshan earthquake sequence are less than Xingtai's. ④ The depth of the high-velocitybodies in Ninghe area is more than that in Tangshan-Luanxian area, which lead to the biggest magnitude and epicentral intensity are lower. These results could be helpful for predicting the main shock of strong swarm-typeearthquakes and later strong aftershocks.
基金Joint Seismological Science Foundation of China (105076) and continued subject ″Statistic Features of Aftershock Sequences and Forecast of the Large Aftershocks″ (2004BA601B01-04-02), Ministry of Science and Technology of China in the 10th Five-Year Plan.
文摘Based on 294 earthquake sequences with magnitude greater than or equal to 5.0 occurred in Chinese mainland since 1970, the spatial distribution features of sequence types have been studied. In southwestern China, it takes mainshock-aftershock sequence type (MAT) as the major in Chuan-Dian rhombic block and concerned Xianshuihe-Anninghe-Xiaojiang seismic belt, as well as in Jinshajiang-Honghe seismic belt. Multiple mainshock type (MMT) mainly distributes in western Yunnan, and Longlin and Lancang areas in Tengchong-Baoshan block in west of Nujiang-Lancangjiang fault zone. A few isolated earthquake type (IET) mainly occurred in northwestern Sichuan and there is no IET occurred in Yunnan region. In northwestern China, it takes mainshock-aftershock sequence type (MAT) as the major in west segment of South Tianshan in Xinjiang region. Some MMT also occurred in this area in the intersection of Kalpin block and the Puchang fault zone. It takes IET as the major in middle Tianshan in Xinjiang. Along the Qilianshan seismic belt, most of sequences are MAT. In Qinghai region, it takes MAT as the major, but the regional feature of the spatial distribution of sequence types is not very clear. In North China, it takes MAT as the major in Yinshan-Yanshan-Bohai seismic belt, north edge of North China, and in Hebei plain seismic belt, as well as in sub-plate of lower river area of Yangtze River. In intersection of north segment of Shanxi seismic belt and the NW-trending Yinshan-Yanshan-Bohai seismic belt, there are several moderate or strong MMT with magnitude from 5.0 to 6.0 occurred. In south of North China around the latitude line of 35°N, it takes IET as the major. The spatial distribution of sequence types is relevant to the patterns of tectonic movements. MAT is mostly produced by the ruptures of locked units or asperities or the neonatal separating segments inside the fault zones. MMT is generally relevant to the conjugate structures or intersection of many tectonic settings. Further extension of simple fault often produces IET. Spatial distribution of sequence types is also correlative to the regional and deep environment of crustal medium to some extent. MAT mainly distributes in high velocity area in upper crust or in the transition zone between high velocity area and low velocity area, MMT mostly occurred in the low velocity area in upper crust.
基金jointly funded by the National Key Research and Development Program of China (No. 2021YFC3000702)the Special Fund of the Institute of Geophysics, China Earthquake Administration (No. DQJB21Z05)the National Natural Science Foundation of China (No. 41804062)
文摘The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.
文摘The sequence characteristics and focal mechanism solution of the Jiashi, Xinjiang strong earthquake swarm are analyzed and studied in this paper. The result shows that before the M S=6.6 earthquake, value h of sequence frequency attenuation coefficient was less than 1, then value h was more than 1. Before occurrence of M S6.0 earthquakes the energy is released either in a continuously strengthened way or a sharply strengthened way, and before M S5.0 earthquakes the sequence frequency shows calm. The study on the focal mechanism solution of the strong earthquake swarm shows that the source faults are mainly in a right lateral, strike slip way and the faults have characteristics of tensor shear.
文摘The kinematics and dynamics of plate tectonics are frontal subjects in geosciences and the strong earthquake occurred along the plate boundary result directly from plate movement. By analyzing Ibaraki earthquake sequence, it has been found that the focal fault plane shows a special image of grading expansion along the direction of strike and adjustment along the dip direction respectively. With the consideration of strike, dip and slip directions of focal mechanism, we have confirmed that Ibaraki earthquake belongs to a thrust fault earthquake occurred under the Japan Trench. The cause of the earthquake sequence is discussed in the paper. The study on the temporal-spatial distribution of the earthquake sequence with a time-scale between the year-scale spatial geodetic data and the second-scale moment tensor of the strong earthquake has indicated the dynamic process of Pacific Plate subduction under the Eurasia Plate. According to the average slip distance of earthquake and the velocity of plate movement, it is predicted that a strong earthquake might occur in recent years.
文摘Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi earthquake sequence using the HypoDD and CAP methods.Based on our results,our main conclusions are as follows:(1)the M_(S)6.4 Yangbi earthquake sequence is a typical foreshock-mainshock-aftershock sequence.The fore-shocks of the first two stages have the obvious fronts of migration and their migration rate increased gradually.There was no apparent front of migration during the third stage,and the occurrence of the mainshock was related to stress triggering from a M5.3 foreshock.We tentatively speculate that the rupture pattern of the Yangbi earthquake sequence conforms to the cascading-rupture model;and(2)the main fault of the M_(S)6.4 Yangbi earthquake sequence is a NW-trending right-lateral strike-slip fault.As time progressed,a minor conjugate aftershock belt formed at the northwest end of this fault,and a dendritic branching structure emerged in the southern fault segment,showing a complex seismogenic fault structure.We suggested that the fault of the Yangbi earthquake sequence may be a young sub-fault of the Weixi-Weishan fault.
基金This project was sponsored by the National Programon KeyBasic Research Projects (2004CB418406) ,the Programfor the Tenth"Five-Year Plan"of China (2004BA601B01-04-03) andthe Joint Earthquake Science Foundation of China (606042) .
文摘The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.
文摘Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine the depth of these micro-earthquakes provided accurate relocation of aftershocks with a reference set of "ground truth(GT)events".
基金a sub-project entitled"Strong Earthquake Trend Assessment of the Jiashi-Bachu and the Tianshan,Xinjiang Areas (Grant No.200333116-06)"under the project of "The MS6.8 Jiashi-Bachu, Xinjiang Earthquakesthe Strong Earthquake Trendin the Future" of the key science and technology research program of Xinjiang Uygur Autonomous Region
文摘In 1997 - 2003, 27 earthquakes with M≥ 5.0 occurred in the Jiashi-Bachu area of Xinjiang. It was a rare strong earthquake swarm activity. The earthquake swarm has three time segments of activity with different magnitudes in the years 1997, 1998 and 2003. In different time segments, the seismic activity showed strengthenin-qguiet changes in various degrees before earthquakes with M ≥ 5.0. In order to delimitate effectively the precursory meaning of the clustering (strengthening) quiet change in sequence and to seek the time criterion for impending prediction, the nonlinear characteristics of seismic activity have been used to analyze the time structure characteristics of the earthquake swarm sequence, and further to forecast the development tendency of earthquake sequences in the future. Using the sequence catalogue recorded by the Kashi Station, and taking the earthquakes with Ms≥ 5.0 in the sequence as the starting point and the next earthquake with Ms = 5.0 as the end, statistical analysis has been performed on the time structure relations of the earthquake sequence in different stages. The main results are as follows: (1) Before the major earthquakes with M ≥ 5.0 in the swarm sequence, the time variation coefficient (δ-value) has abnormal demonstrations to different degrees. (2) Within 10 days after δ= 1, occurrence of earthquakes with M ≥ 5.0 in the swarm is very possible. (3) The time variation coefficient has three types of change. (4) The change process before earthquakes with M5.0 is similar to that before earthquakes with M6.0, with little difference in the threshold value. In the earthquake swarm sequence, it is difficult to delimitate accurately the attribute of the current sequences (foreshock or aftershock sequence) and to judge the magnitude of the follow-up earthquake by δ-value. We can only make the judgment that earthquakes with M5.0 are likely to occur in the sequence. (5) The critical clustering characteristics of the sequence are hierarchical. Only corresponding to a certain magnitude can the sequence have the variation state of critical clustering. (6) The coefficient of the time variation has a clear meaning in physics. After the clustering-quiet state of earthquake activity has appeared, it can describe clearly the randomness of the seismogenic system. Furthermore, it can efficiently clarify whether or not the clustering quiescence variation is of some prognostic meaning. In the case that the earthquake frequency attenuation is essentially normal (h 〉 1 ) and there is no remarkable clustering-quiescence state, it is still possible to discover the abnormal change of the sequence from the time variation coefficient. On the contrary, in the later period of swarm activity, after the appearance of many seismic quiescence phenomena, this coefficient did not appear abnormally, even when h 〈 1, suggesting that the δ-value diagnosis is more universal.
文摘Within a time distribution of magnitude values, before any mainshock some earthquake triggering patterns with several features develop, under tectonic processes’ influence, through which it is possible to early identify the preparation phase of big earthquakes. The purpose of this article was to identify and classify the warning patterns that develop before a big earthquake by considering space-time seismicity variations. The methodological approach adopted was of graphical type, based on procedures of technical analysis currently used to estimate the financial markets. In the initial phase of the study we have analyzed the seismic sequences types described in the bibliography (type 1: foreshocks-mainshock-aftershocks, type 2: mainshock-aftershock;type 3: swarm) and the main structure of the seismic cycle, within which maximum and minimum magnitude values characterize the pattern that it develops until the main event changes. Then, we assessed the position of foreshocks, mainshock and aftershocks within the seismic cycle in order to identify the warning pattern that characterized the exact time when the energy emission occurs. As to the evolution normally shown over time, we have grouped the warning patterns in 2 categories: 1) progressive earthquake pattern;2) flash earthquake pattern. Finally, we have made a classification of the warning pattern related to the fluctuations of maximum and minimum magnitude values, compared its form with the mainshock’s focal mechanism and suggested some graphic procedures in order to estimate the mainshock magnitude value associated with each warning pattern. The results we obtained unquestionably allow a better comprehension of preparation process of a large earthquake, improving the earthquakes forecasting probability in the next future.
文摘Through the accurate determination of hypocenter location, the measurement of the main focal mechanism solutions and the analyses of time dependent processes for Sichuan Mianzhu earthquake sequence with M S=5 0 occurred along the middle segment of Longmenshan fault zone on November 30, 1999, the distribution of focal depth section, the stress release and seismicity features are given to reveal the earthquake-generating structure of the earthquake sequence. The obtained results show the activity features for this sequence as follows: ① There is no obvious foreshock, the accumulated strain energy releases in nearly pulse way, fluctuation of the seismic activity level is not quite evident during the duration of the sequence, and the statistical relation between the large events and the small events is less compatible with the traditional G-R estimation; ② The epicenters of the earthquake sequence are not distributed on the main Longmenshan piedmont faults emerging out ground, but near the hidden Longmenshan piedmont faults. The direction of epicenter distribution is not very coincident with the fault strikes. The microscopic epicenters are relatively far from the macroscopic epicenters. The focal depths range from 5km to 16km; ③ The fractures of focal fault plane with the NE strike appear out the strike-slip displacement with a few overthrust components under the major principal compressive stress of NNE direction. From these, we consider it should be paid more attentions to the underground hidden faults near the ground fault zone on a large scale for their generating earthquake risk.
基金jointly sponsored by the Special Program of Earthquake Science and Technology of Earthquake Administration of Sichuan Province(LY1302) the National Key Technology R&D Program of China(2012BAK19802)
文摘The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.
文摘The state of the stress fields in the source region is analysed systematically, on the basis of the focal mechanismsof 167 events with Ms≥4. 0 of Tangshan sequence and 163 moderate-small events of Lancang sequence respectively. The result indicates that the directions of the stress field in the source region are generally stable and thevariation is not obvious after the occurrence of strong shock. The dominant orientations of focal mechanisms ofthe aftershocks are consistent with that of the mainshock, there is still a small difference between some mechanisms of aftershocks and the mechanism of mainshock, and the difference decreases as time goes on. The numbers of solutions with dominant direction of Tangshan and Lancang sequences are similar to each other, it indicates that the controls of the strong earthquake sequences from the tectonic stress field are similar to each othertoo. Through the hierarchical clustering analysis of focal mechanism,it is found that the number of clusters ofTangshan sequence is larger than that of Lancang sequence,and their orientations are relatively disordered. Itmay be the cause that the tectonics in the Tangshan region are more complicated than those in the Lancang region.
文摘A total of 6 earthquake sequences that occurred in the Kuril Islands region in 1964-1976 has been collected and their characteristics have been analyzed. When these sequences are judged from the spatial relation between their source distribution and the subduction zone, all of them belong to plate boundary earthquake sequences. The parameters of 5 ones among these sequences, which are located just in the subduction zone, are in fair agreement. For these 5 sequences, the major axis of epicenter distribution area is longer; the ratio of major axis to minor axis is high; the focal depths have a greater range; the directions of dip are consistent with the direction of subduction; the dip angles are of moderate value. It is estimated that the only exception is related to the low accuracy of data in the early stage.
文摘Based on the research on 108 strictly selected earthquake sequences since 1965 in the Chinese mainland, why the magnitude structures of most of these sequences are not in accord with the G R relation has been analyzed and the fitting method with the division of the magnitude structure for the earthquake sequences has been suggested. The characteristic values of this method in the high magnitude interval have mainly been researched, and characteristic magnitude percent f and the slope ratio b 2 of the high magnitude interval, which are different for various sequence types are most obvious. The results show that the N M patterns of magnitude structures for 52.8% earthquake sequences are not in accord with the G R relation from the magnitude less than 80% of the maximum one and that for only 18.5% earthquake sequences show the decrease trend in the high magnitude interval. When b 2 <0 or 0 b 2 <3.0 and f is less, the strong aftershocks in the earthquake sequences are less; when b 2 3.0 for the sequence, several strong aftershocks often occurred; when 0b 2<3.0 and f is bigger, aftershocks with middle magnitude are more in these sequences.
基金Scientific and Technological Key Project of Yunnan Province (2001NG46)
文摘On the basis of about 300 earthquake wave forms observed in the Shidian MS=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5~5.3, the seis-mic moments are 1010~1016 N?m, the corner frequencies are 0.2~0.8 Hz, radii of the focal rupture are 200~2 500 m and the stress drops are 0.1×105~20×105Pa. Through the statistical analyses of variation of corner frequency fc and stress drop ?σ with time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops ?σ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of av-erage corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses.
文摘According to the rupture dynamics of earthquakes, variations of the apparent stress and the difference between the static stress drop and the dynamic stress drop during the rupture of earthquakes are analyzed for the July 20, 1995 ML=4.1 Shacheng, Hebei, China, earthquake sequence. Results obtained show that the apparent stress for main-shock is about 5 MPa, and the average apparent stress for aftershocks 0.047 MPa. During the rupture of the main-shock, the dynamic stress drop is approximately 1.6 times greater than the static stress drop with the difference of nearly 2.7 MPa. The dynamic stress drop is less than the static stress drop for all aftershocks with the average difference of -0.75 MPa. Therefore, when the mainshock occurs the final stress on the focal fault is higher than the dynamic frictional stress, corresponding to that the fault is abruptly locked. When the aftershocks occur the final stress on the focal fault is lower than the dynamic frictional stress, corresponding to that the fault overshoots. It can be seen from the above results that there could be some differences in the physic processes between the mainshock and the aftershocks.