期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The principle of a navigation constellation composed of SIGSO communication satellites 被引量:1
1
作者 Hai-Fu Ji Li-Hua Ma +1 位作者 Guo-Xiang Ai Hu-Li Shi 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第4期479-489,共11页
The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioni... The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication. 展开更多
关键词 astrometry and celestial mechanics - astronomy application-artificial satellite - satellite navigation constellation
下载PDF
Feasibility study of autonomous orbit determination using only the crosslink range measurement for a combined navigation constellation 被引量:1
2
作者 Gao Youtao Xu Bo Zhang Lei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1199-1210,共12页
In order to expand the coverage area of satellite navigation systems, a combined navigation constellation which is formed by a global navigation constellation and a Lagrangian navigation constellation was studied. Onl... In order to expand the coverage area of satellite navigation systems, a combined navigation constellation which is formed by a global navigation constellation and a Lagrangian navigation constellation was studied. Only the crosslink range measurement was used to achieve long-term precise autonomous orbit determination for the combined navigation constellation, and the measurement model was derived. Simulations of 180 days based on the international global navigation satellite system(GNSS) service(IGS) ephemeris showed that the mentioned autonomous orbit determination method worked well in the Earth–Moon system. Statistical results were used to analyze the accuracy of autonomous orbit determination under the influences of different Lagrangian satellite constellations. 展开更多
关键词 Autonomous navigation Crosslink range Lagrange point navigation constellation Orbit determination
原文传递
Demand and key technology for a LEO constellation as augmentation of satellite navigation systems
3
作者 Yuanxi Yang Yue Mao +2 位作者 Xia Ren Xiaolin Jia Bjiao Sun 《Satellite Navigation》 SCIE EI 2024年第1期1-9,共9页
A Low Earth Orbit(LEO)constellation augmenting satellite navigation is important in the future development of Global Navigation Satellite System(GNSS).GNSS augmented by LEO constellations can improve not only the accu... A Low Earth Orbit(LEO)constellation augmenting satellite navigation is important in the future development of Global Navigation Satellite System(GNSS).GNSS augmented by LEO constellations can improve not only the accuracy of Positioning,Navigation,and Timing(PNT),but also the consistency and reliability of secure PNT system.This paper mainly analyzes the diverse demands of different PNT users for LEO augmented GNSS,including the precision demand in real-time,the availability demand in special areas,the navigation signal enhancement demand in complex electromagnetic environments,and the integrity demand with high security.Correspondingly,the possible contributions of LEO constellations to PNT performance are analyzed from multiple aspects.A particular attention is paid to the special PNT user requirements that cannot be fulfilled with existing GNSS,such as the PNT service demand in the polar regions and the onboard GNSS orbit determination demand of some LEO satellites.The key technologies to be considered in the constellation design,function realization,and payload development of the LEO-augmented navigation system are summarized. 展开更多
关键词 Low earth orbit navigation constellation Accuracy augmentation Orbit determination Integrity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部