It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo...We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.展开更多
This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersio...This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.展开更多
A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted...A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.展开更多
Adsorption properties of layered anionic clay-composites for the removal of anionic dyes from water were studied. The dye adsorption capacities of the composites were higher than the pristine clay. The clay-alginate c...Adsorption properties of layered anionic clay-composites for the removal of anionic dyes from water were studied. The dye adsorption capacities of the composites were higher than the pristine clay. The clay-alginate composite with 5.9% alginate showed highest adsorption for both the dyes. The maximum adsorption capacity of the composite was enhanced by 51% for Acid Green 25 and 160% for Acid Green 27, compared to the pristine layered clay sample. The adsorption isotherm data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The isotherm data could be explained well using the Freundlich isotherm model. Adsorption kinetics was analyzed using normal first order and Lagergren first order kinetic models.展开更多
The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architec...The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.展开更多
A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Ba...Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.展开更多
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th...The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.展开更多
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms...The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(&lt;0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.展开更多
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers...Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic...Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.展开更多
Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) ...The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.展开更多
Dense Nb/Nb5Si3 composites were fabricated via spark plasma sintering technology using Nb, Si, and Al elemental powders as raw materials. The microstructttres of the synthesised composites were analyzed through scanni...Dense Nb/Nb5Si3 composites were fabricated via spark plasma sintering technology using Nb, Si, and Al elemental powders as raw materials. The microstructttres of the synthesised composites were analyzed through scanning electron microscopy, X-ray diffraction, and electron probe microanalysis. The results show that the composites consisted of residual Nb particle phase and Nb5Si3 phase. The microstructure of the Nb/ Nb5Si3 in situ composites was evidently affected by Al addition, which prompted the formation of the Al3Nb10Si3 phase. In addition, the Rockwell hardness of the composites decreased with the increase in AI additions. The Rockwell hardness of Nb-20Si is 60HRC, which decreased to approximately 52.7 HRC when the Al content increased to 15 at%. The oxidation resistance of the Nb/NbsSi3 in situ composites significantly improved with the increase in Al addition.展开更多
The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor ...The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.展开更多
Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed...Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).展开更多
Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical prope...Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical properties were investigated. It was indicated that no reaction products appeared at W_f/Al interfaces in pure Al matrix composites. While, in W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb,intermetallic WAl_4 interfacial reaction products formed. Much better strengthening effect from W filament was shown in the W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb composites than in the pure Al matrix composite. Their strength reached 319 and 339MPa, respectively, with only a small content of W_f(<5Vol.%). The excellent reinforcement effects could be predominantly attributed to the strong W_f/Al interfacial bonding strength due to the interfacial reaction.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金Funded by Changsha Natural Science Foundation(No.kq2208270)。
文摘We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.
基金supported by the National Natural Science Foundation of China(Nos.10672108 and 10632020)the key project of the Ministry of Education of China(No.206014).
文摘This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves axe derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
基金funded by the National Natural Science Foundation of China(Grant No.11972018)the Defense Pre-Research Joint Foundation of Chinese Ordnance Industry(Grant No.6141B012858)。
文摘A layered charge composed of the JH-2 explosive enveloped by a thick-walled cylindrical casing(active aluminum/rubber and inert lithium fluoride/rubber composites) was designed and explosion experiments were conducted in a 1.3 m3tank and a 113 m3bunker.The blast parameters,including the quasistatic pressure(ΔpQS),special impulse(I),and peak overpressure(Δpmax),and images of the explosion process were recorded,and the influence of the Al content(30% and 50%) and Al particle size(1,10,and 50 μm) on the energy release of aluminum/rubber composites were investigated.The results revealed that the use of an active layer increased the peak overpressure generated by the primary blast wave,as well as the quasistatic pressure and special impulse related to fuel burning within tens of milliseconds after detonation.When the Al content was increased from 30% to 50%,the increases of ΔpQS and I were not obvious,and Δpmaxeven decreased,possibly because of decreased combustion efficiency and greater absorption of the blast wave energy for layers with 50% Al.Compared with the pure JH-2charge,the charge with 1 μm Al particles produced the highest Δpmax,indicating that better transient blast performance was generated by smaller Al particles.However,the charge with 10 μm Al particles showed the largest ΔpQSand I,suggesting that a stronger destructive effect occurred over a longer duration for charges that contained moderate 10 μm Al.
文摘Adsorption properties of layered anionic clay-composites for the removal of anionic dyes from water were studied. The dye adsorption capacities of the composites were higher than the pristine clay. The clay-alginate composite with 5.9% alginate showed highest adsorption for both the dyes. The maximum adsorption capacity of the composite was enhanced by 51% for Acid Green 25 and 160% for Acid Green 27, compared to the pristine layered clay sample. The adsorption isotherm data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The isotherm data could be explained well using the Freundlich isotherm model. Adsorption kinetics was analyzed using normal first order and Lagergren first order kinetic models.
文摘The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
文摘Research into the moisture transport processes in porous materials is primarily important for theoretical modelling and industrial applications in the design of energy saving buildings and living environments, etc. Based on experimental investigation, we propose new models which describe one-dimensional transport through one-layered uniform materials and dissimilar two-layered composites. Diffusivity as a function of moisture content is obtained through a Boltzman transformation, master curves, and combined numerical and regression techniques. Transport processes in one and two-layered composites are simulated on the basis of extended unsaturated Darcy’s Law using the finite element method (FEM). Simulation results show significantly different transport patterns of moisture profile when moisture migrates in different directions, and high agreement with experimental moisture profiles. Keywords Porous materials - moisture transport - two-layered composites - modelling and simulation Qingguo Wang graduated from Hebei Normal University, China, in 1985. He received the M.Sc. degree from Beijing Petroleum University in 1988 and the Ph.D. degree from the University of Luton, UK, in 2005. He is currently a Research Associate in the Department of Electrical Engineering and Electronics at the University of Liverpool, UK and an Associate Professor of Shijiazhuang Mechanical Engineering College, China. His research interests include measurement and control, mass and heat transportation, EMC, etc.Kemal Ahmet graduated in physics from the University of Leeds. Following the completion of his masters degree, he completed his Ph.D. at the University of London in the area of nuclear instrumentation in 1992. Until recently, he was a Principal Lecturer at the University of Luton, leading a research group in moisture instrumentation, measurement and monitoring. In 2004 he joined Medtronic, world leader in medical technology, and is currently working in the Neurologic Technologies division as a specialist in powered surgical instrumentation.Young Yue is a Principal Lecturer at the University of Luton, UK. He holds a B.Sc. in mechanical engineering from the Northeastern University, China, and a Ph.D. from Heriot-Watt University, UK. He is a chartered engineer and a member of the Institution of Mechanical Engineers, UK. Dr. Yue has been working in academia for 15 years following his 8 years of industrial experience. His main research interests are CAD/CAM, geometric modelling, virtual reality, and pattern recognition. He has over 70 publications in refereed books, journals and conferences.
文摘The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.
基金supported by a National Program on Key Basic Research Project(973 Program,Grant No.2011CB808903)National Natural Science Foundation of China(Grant Nos.41073030 and 41121002)a 'CAS Hundred Talents' project under Chinese Academy of Sciences to CYW and a GIGCAS 135 project Y234041001
文摘The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(&lt;0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma.
基金support from the U.S.Department of Energy National Energy Technology Laboratory(DE-FE0031736)the New York State Foundation for Science,Technology and Innovation(NYSTAR).
文摘Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
基金Engineering Research Institute of Peking University (ERIPKU) Joint Building Project of Beijing Education Committee
文摘Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.
文摘The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.
基金Funded by National Natural Science Foundation of China(No.51271091)Science Project of Jiangxi Ministry of Education of China(No.GJJ12420)
文摘Dense Nb/Nb5Si3 composites were fabricated via spark plasma sintering technology using Nb, Si, and Al elemental powders as raw materials. The microstructttres of the synthesised composites were analyzed through scanning electron microscopy, X-ray diffraction, and electron probe microanalysis. The results show that the composites consisted of residual Nb particle phase and Nb5Si3 phase. The microstructure of the Nb/ Nb5Si3 in situ composites was evidently affected by Al addition, which prompted the formation of the Al3Nb10Si3 phase. In addition, the Rockwell hardness of the composites decreased with the increase in AI additions. The Rockwell hardness of Nb-20Si is 60HRC, which decreased to approximately 52.7 HRC when the Al content increased to 15 at%. The oxidation resistance of the Nb/NbsSi3 in situ composites significantly improved with the increase in Al addition.
基金National Natural Science Foundation of China (90405016)
文摘The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.
基金the National Natural Science Foundation of China under grant No.50175004
文摘Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).
文摘Unidirectional Tungsten filament (W_f) reinforced pure Al,Al-6Ti-6Nb and SiC_p-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical properties were investigated. It was indicated that no reaction products appeared at W_f/Al interfaces in pure Al matrix composites. While, in W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb,intermetallic WAl_4 interfacial reaction products formed. Much better strengthening effect from W filament was shown in the W_f/Al-6Ti-6Nb and W_f/SiCp-Al-6Ti-6Nb composites than in the pure Al matrix composite. Their strength reached 319 and 339MPa, respectively, with only a small content of W_f(<5Vol.%). The excellent reinforcement effects could be predominantly attributed to the strong W_f/Al interfacial bonding strength due to the interfacial reaction.