Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical ...Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.展开更多
In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has mu...In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has much smaller hardness and elastic modulus than glassy matrix, and the stress concentration at interface provides a channel for the initiating and branching of shear bands upon loading, thus leading to a high compressive fracture strain of 6.08% and fracture strength about 2200 MPa. Comparing with other Cu-based BMG composite, the fracture strength of present (Cu0.6Zr0.3Ti0.1)95Nb5 composite is not significantly reduced, indicating that the addition of Nb in the current work is an effective and effortless way to fabricate new practical BMG composites with enhanced strength and good plasticity.展开更多
Ti-6Al-4V(wt.%) and Ti-22Al-25Nb(at.%) were joined by diffusion bonding at 950 ℃ and 15 MPa for 100 min, and the microstructure and mechanical properties of the resulting joints were investigated. The composition of ...Ti-6Al-4V(wt.%) and Ti-22Al-25Nb(at.%) were joined by diffusion bonding at 950 ℃ and 15 MPa for 100 min, and the microstructure and mechanical properties of the resulting joints were investigated. The composition of the diffusion layer is B2/discontinuous α/α2 layer/necklace-shaped β+α’ layer, where the content of any element at a given point mainly depends on the distance of the point from the interface and the phase type at the point. The tensile strength of the joint is 894 MPa, which is almost the same as that of the Ti-22Al-25Nb base alloy. The fracture surfaces on both sides of the joint are composed of two main regions. One region displays a relatively flat surface and fractures along the bonding interface. The other is composed of a moderate number of irregularly-shaped cavities on the Ti-6Al-4V side and many irregularly-shaped bulges on the Ti-22Al-25Nb side. Both regions result from fracture along the boundaries between β+α’ layers and αp grains or from the transcrystalline fracture of αp grains.展开更多
The brazing of Al 2O 3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni 5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 4231 573 K fo...The brazing of Al 2O 3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni 5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 4231 573 K for 1120 min. The results show that the shear strength of the joint first increases and then decreases with increasing holding time and brazing temperature. The joint interface microstructure and elements distribution were investigated. It can be concluded that a composite structure, in which the base metals are solid solution Nb(V) and Nb(Ti) reinforced by Ni 2Ti, is formed when the brazing temperature is 1 473 K and holding time 15 min, and a satisfactory joint strength can be achieved. The interaction of Ti foil and Ni 5V foil leads to the formation of liquid eutectic phase with low melting point, at the same time the combination of Ti come from the interlayer with O atoms from Al 2O 3 results in the bonding of Al 2O 3 and Nb.展开更多
The glass forming ability of the [(Fe12/13Y1/13)100?xBx]96Nb2Zr2 (x=9–26) system was investigated using a series of cluster lines. Three types of clusters, an icosahedron (Fe12Y), a capped Archimedes anti-prism (Fe8B...The glass forming ability of the [(Fe12/13Y1/13)100?xBx]96Nb2Zr2 (x=9–26) system was investigated using a series of cluster lines. Three types of clusters, an icosahedron (Fe12Y), a capped Archimedes anti-prism (Fe8B3) and a capped trigonal prism (Fe9B), as well as a binary eutectic (Fe83B17) were considered. Bulk glassy alloy rods of 3 mm in diameter were synthesized using a copper mold suction-casting method. The glass transition temperature was observed for all samples in the boron range of 15.9at%-25.7at%, with the alloy at 15.9at% of boron having the best thermal properties. The ferrous-based bulk metallic glasses (BMG) obtained have high reduced glass transition temperatures with the maximum reaching 0.63 and large supercooled liquid regions with the maximum reaching 111 K. Magnetic testing revealed a large value of coercive force and remanent magnetization, being 11 kA/m and 0.1 T, re- spectively.展开更多
Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has ...Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has undergone large -scale magmatic intrusion affected by the tectonic compression of the Pacific Plate in the Mesozoic (known as the Yanshanian movement) to form many alkaline rocks such as the Wulingshan rock mass. Previous studies have conducted petrological research and reconnaissance survey of rare metal ores in this area (Tian Shuzhang and Guo Zongshan, 1981; Xu Baoling et al., 1996). In 2016, the Qinhuangdao Mineral and Hydrology Engineering Geological Brigade of Hebei Bureau of Geology and Mineral Resources Exploration implemented the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province, and discovered super-large rare metal deposits of rubidium and biobium in the Madi alkali feldspar granite bodies in the Huashi Village to achieve great breakthrough of rare metal ore prospecting.展开更多
基金Project (SWU110046) supported by the Doctorate Foundation of Southwest University,China
文摘Bulk metallic glass(BMG) rods Fe71Mo5-xNbxP12C10B2(x=1,2,3,4 and 5) with diameter of 1 or 2 mm were synthesized by copper mold casting.The effects of Nb substitution for Mo on the structure,thermal and mechanical properties of Fe71Mo5-xNbxP12C10B2 alloys were studied by X-ray diffraction,differential scanning calorimetry and compressive testing.The results show that the substitution of Nb for Mo leads to a decreased glass forming ability,but with plasticity of 1.0%,the fracture strength of Fe71Mo2Nb3P12C10B2 alloy increases up to 4.0 GPa.The improvement of the fracture strength is discussed in terms of the enhancement of atomic bonding nature and the favorite formation of a network-like structure due to the substitution of Nb for Mo.
基金Project(51371149)supported by the National Natural Science Foundation of ChinaProject(151048)supported by the HUO Ying-dong Young Teacher Fund+4 种基金Project(2015ZF53066)supported by the Aeronautical Science Foundation of ChinaProject(92-QZ-2014)supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProject(2015KJXX-10)supported by Shaanxi Young Stars of Science and Technology,ChinaProejct(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the National Science Funds for Distinguished Young Scientists,China
文摘In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has much smaller hardness and elastic modulus than glassy matrix, and the stress concentration at interface provides a channel for the initiating and branching of shear bands upon loading, thus leading to a high compressive fracture strain of 6.08% and fracture strength about 2200 MPa. Comparing with other Cu-based BMG composite, the fracture strength of present (Cu0.6Zr0.3Ti0.1)95Nb5 composite is not significantly reduced, indicating that the addition of Nb in the current work is an effective and effortless way to fabricate new practical BMG composites with enhanced strength and good plasticity.
基金the financial supports from the National Natural Science Foundation of China(No.51505323)State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China(No.AWJ-17M-04).
文摘Ti-6Al-4V(wt.%) and Ti-22Al-25Nb(at.%) were joined by diffusion bonding at 950 ℃ and 15 MPa for 100 min, and the microstructure and mechanical properties of the resulting joints were investigated. The composition of the diffusion layer is B2/discontinuous α/α2 layer/necklace-shaped β+α’ layer, where the content of any element at a given point mainly depends on the distance of the point from the interface and the phase type at the point. The tensile strength of the joint is 894 MPa, which is almost the same as that of the Ti-22Al-25Nb base alloy. The fracture surfaces on both sides of the joint are composed of two main regions. One region displays a relatively flat surface and fractures along the bonding interface. The other is composed of a moderate number of irregularly-shaped cavities on the Ti-6Al-4V side and many irregularly-shaped bulges on the Ti-22Al-25Nb side. Both regions result from fracture along the boundaries between β+α’ layers and αp grains or from the transcrystalline fracture of αp grains.
文摘The brazing of Al 2O 3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni 5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 4231 573 K for 1120 min. The results show that the shear strength of the joint first increases and then decreases with increasing holding time and brazing temperature. The joint interface microstructure and elements distribution were investigated. It can be concluded that a composite structure, in which the base metals are solid solution Nb(V) and Nb(Ti) reinforced by Ni 2Ti, is formed when the brazing temperature is 1 473 K and holding time 15 min, and a satisfactory joint strength can be achieved. The interaction of Ti foil and Ni 5V foil leads to the formation of liquid eutectic phase with low melting point, at the same time the combination of Ti come from the interlayer with O atoms from Al 2O 3 results in the bonding of Al 2O 3 and Nb.
基金This project was financially supported by the National Natural Science Foundation of China (No.50401020, 50671018, 50631010)the Provincial Science and Technology Foundation of Liaoning, China.
文摘The glass forming ability of the [(Fe12/13Y1/13)100?xBx]96Nb2Zr2 (x=9–26) system was investigated using a series of cluster lines. Three types of clusters, an icosahedron (Fe12Y), a capped Archimedes anti-prism (Fe8B3) and a capped trigonal prism (Fe9B), as well as a binary eutectic (Fe83B17) were considered. Bulk glassy alloy rods of 3 mm in diameter were synthesized using a copper mold suction-casting method. The glass transition temperature was observed for all samples in the boron range of 15.9at%-25.7at%, with the alloy at 15.9at% of boron having the best thermal properties. The ferrous-based bulk metallic glasses (BMG) obtained have high reduced glass transition temperatures with the maximum reaching 0.63 and large supercooled liquid regions with the maximum reaching 111 K. Magnetic testing revealed a large value of coercive force and remanent magnetization, being 11 kA/m and 0.1 T, re- spectively.
基金financially supported by the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province from the Hebei Bureau of Geology and Mineral Resources Exploration (grant No.2015017)
文摘Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has undergone large -scale magmatic intrusion affected by the tectonic compression of the Pacific Plate in the Mesozoic (known as the Yanshanian movement) to form many alkaline rocks such as the Wulingshan rock mass. Previous studies have conducted petrological research and reconnaissance survey of rare metal ores in this area (Tian Shuzhang and Guo Zongshan, 1981; Xu Baoling et al., 1996). In 2016, the Qinhuangdao Mineral and Hydrology Engineering Geological Brigade of Hebei Bureau of Geology and Mineral Resources Exploration implemented the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province, and discovered super-large rare metal deposits of rubidium and biobium in the Madi alkali feldspar granite bodies in the Huashi Village to achieve great breakthrough of rare metal ore prospecting.