Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermody...Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.展开更多
基金supported by the National Natural Science Foundation of China (2169008, 21690084, 21673228, 21303187, 21403218)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)+1 种基金DICP ZZBS 201612Key Projects for Fundamental Research and Development of China (2016YFA0202801)~~
文摘Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.