The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas...The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.展开更多
The exceptionally low corrosion rate(∼0.1 mm y^(–1)in concentrated NaCl solution for 7 days)enables lean Mg-Ca alloys great potential for diverse applications,particularly if relevant properties(e.g.mechanical stren...The exceptionally low corrosion rate(∼0.1 mm y^(–1)in concentrated NaCl solution for 7 days)enables lean Mg-Ca alloys great potential for diverse applications,particularly if relevant properties(e.g.mechanical strength,electrochemical performance,etc.)can be enhanced by thermomechanical processing.However,herein it is demonstrated that the corrosion performance of lean Mg-Ca is susceptible to the heating process.The corrosion rate of Mg-0.15 wt%Ca alloy is remarkably accelerated after annealing even for a short time(4 h at 400℃)because Fe precipitation readily takes place.Fortunately,it is found that micro-alloying with dedicated additional elements is able to solve this problem.Nevertheless,the problem-solving capability is dependent on the element category,particularly the ability of the alloying element to constrain the Fe precipitation.Among the three studied elements(i.e.Sn,Ge and In),only In shows good competence of restricting the formation of Fe-containing precipitates,thereby contributing to retention of the superior corrosion resistance after annealing even at a rigorous condition(24 h at 450℃).The finding creates good foundation for follow-up work of developing lean Mg-Ca-based alloys combining high corrosion resistance,superior electrochemical performance with excellent mechanical properties for applications as biodegradable implants and anode materials for aqueous batteries.展开更多
文摘The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.
基金funded by dtec.bw–Digitalization and Technology Research Center of the Bundeswehr which M.Deng gratefully acknowledges project DMFthe AMABML project founded by the Zentrum für Hochleistungsmaterialien(ZHM)。
文摘The exceptionally low corrosion rate(∼0.1 mm y^(–1)in concentrated NaCl solution for 7 days)enables lean Mg-Ca alloys great potential for diverse applications,particularly if relevant properties(e.g.mechanical strength,electrochemical performance,etc.)can be enhanced by thermomechanical processing.However,herein it is demonstrated that the corrosion performance of lean Mg-Ca is susceptible to the heating process.The corrosion rate of Mg-0.15 wt%Ca alloy is remarkably accelerated after annealing even for a short time(4 h at 400℃)because Fe precipitation readily takes place.Fortunately,it is found that micro-alloying with dedicated additional elements is able to solve this problem.Nevertheless,the problem-solving capability is dependent on the element category,particularly the ability of the alloying element to constrain the Fe precipitation.Among the three studied elements(i.e.Sn,Ge and In),only In shows good competence of restricting the formation of Fe-containing precipitates,thereby contributing to retention of the superior corrosion resistance after annealing even at a rigorous condition(24 h at 450℃).The finding creates good foundation for follow-up work of developing lean Mg-Ca-based alloys combining high corrosion resistance,superior electrochemical performance with excellent mechanical properties for applications as biodegradable implants and anode materials for aqueous batteries.