This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel co...This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.展开更多
The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation rati...The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation ratio and precipitation rate of vanadium in the specimensreach maximum respectively at 900, -825 and 825 deg C. There is still l0 percent-l7 percent ofvanadium precipitated when the deformation temperature decreases to 800-700 deg C. Vanadium largelyaffects the ductility of the steel in the low ductility temperature Region III. Embrittlement ofsteel with higher V content is severer in the region and the embrittlement extends to lowertemperature.展开更多
The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX ...The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.展开更多
The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high...The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.展开更多
The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas...The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.展开更多
Influence of different cooling rates on the microstructure and the precipitation behavior of Nb-Ti microalloyed steel was investigated by CSLM, OM, SEM and EDS. The results show that the precipitation process of carbo...Influence of different cooling rates on the microstructure and the precipitation behavior of Nb-Ti microalloyed steel was investigated by CSLM, OM, SEM and EDS. The results show that the precipitation process of carbonitrides can be in-situ observed by CSLM, and with the increase of the cooling rate, the distribution of precipitates changes from along the austenitic grain boundaries to within the grains. With the increase of the cooling rate, the proeutectoid ferritic film becomes smaller and smaller and then disappears, and the original austenitic grains become finer and finer. In order to obtain non-film like proeutectoid ferrites or non-chain like precipitates along the austenitic grain boundaries and finer austenitic grains,the cooling rate should be at least 5℃/s.展开更多
Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperat...Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austenite were discussed. Corresponding to parameter Z in the dynamic recrystallization diagram, parameterY was then introduced to simplify static recrystallization diagrams.展开更多
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ...Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.展开更多
The hot rolling experiment investigates into the relationship between the microstructures and the mechanical properties of Nb-Ti microalloyed steels with various Ti contents. The results indicate that the effect of th...The hot rolling experiment investigates into the relationship between the microstructures and the mechanical properties of Nb-Ti microalloyed steels with various Ti contents. The results indicate that the effect of the bainite fraction of Nb-Ti microalloyed steels on the yield strength of the steels is not related to Ti content, while the slope of the Hall- Petch relationship decreases with the increase of Ti content. Accordingly, the Misra model for the yield strength of Nb-Ti microalloyed steels is modified, and the factors which cause the change in the slope of Hall-Petch relationship are discussed.展开更多
In situ measurements of austenite grain growth were made at various temperatures in the range of 1273-1473 K with subsequent isothermal holding time of 3600 s for the Nb-Ti-bearing and Nb-Ti-free high carb on steel by...In situ measurements of austenite grain growth were made at various temperatures in the range of 1273-1473 K with subsequent isothermal holding time of 3600 s for the Nb-Ti-bearing and Nb-Ti-free high carb on steel by using a confocal laser scanning microscope.The solid solute behavior of Nb-Ti carbides during austenitizing process was analyzed.The experimental results indicate that the austenite grains of both steels grow up gradually with increasing the heating temperature and holding time;the size and growth rate of austenite grain of Nb-Ti-bearing high carbon steel are much lower than those of Nb-Ti-free high carbon steel.A large amount of(Nb,Ti)(C,N)nanoparticles are observed in Nb-Tibearing steel,which retain the strong pinning effect on austenite grain boundary.The kinetics model of austenite grain growth of Nb-Ti-bearing steel during isothermal heat treatment is obtained and the predicted values calculated by using the model meet the experimental values very well.展开更多
Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing pa...Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.展开更多
Hot ductility of the Nb- and Ti-containing line-pipe steel CC slab specimens were measured under the sirain rate of 1 x 10-3/s. Three types of precipitates were found in the fractured specimens. One was the block-shap...Hot ductility of the Nb- and Ti-containing line-pipe steel CC slab specimens were measured under the sirain rate of 1 x 10-3/s. Three types of precipitates were found in the fractured specimens. One was the block-shaped coarse TiN particles precipitated at high temperature. Another type was the fine dynamic precipitation products precipitated at 950~900℃ which caused remarkable ductility reduction of the steel. The third type was the co-existed precipitates formed by fine Nb precipitates nucleating and growing on TiN paricles. Compared with Nb-containing steel which contains no Ti, there was no ductility drop for Nb- and Ti-containing steel at temperature between 850℃ and Ar3 and, the γ→α transformation inside the grain matrixes proceeded faster, which both improved the ductility of the steel in the low ductility temperature Region Ⅲ.展开更多
Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and th...Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.展开更多
Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and co...Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.展开更多
Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(...Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(C,N) precipitates formed during the continuous casting of micro-alloyed steel. Based on Andersen-Grong equation, a coupling model of second phase precipitation and austenite grain growth has been established, and the influence of second precipitates on austenite grain growth under different cooling rates is discussed. Calculations show that the final sizes of austenite grains are 2.155, 1.244, 0.965, 0.847 and 0.686 mm, respectively, under the cooling rate of 1, 3, 5, 7, and 10 ℃·s^(-1), when ignoring the pinning effect of precipitation on austenite growth. Whereas, if taking the pinning effect into consideration, the grain growth remains stable from 1,350 ℃, the calculated final sizes of austenite grains are 1.46, 1.02, 0.80, 0.67 and 0.57 mm, respectively. The sizes of final Ti(C,N) precipitates are 137, 79, 61, 51 and 43 nm, respectively, with the increase of cooling rate from 1 to 10 ℃·s^(-1). Model validation shows that the austenite size under different cooling rates coincided with the calculation results. Finally, the corresponding measures to strengthen cooling intensity at elevated temperature are proposed to improve the ductility and transverse crack of slab.展开更多
The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composit...The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.展开更多
The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy...The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy and X-ray diffraction analyses,tensile tests,and carbonitride extraction experiments were conducted to investigate the microscopic mechanisms.The results showed that the primary precipitates in SUS 430 ferritic stainless steel were Cr_(23)C_6,Mn_(23)C_6,and Cr_7C_3,and the primary strengthening mechanism was precipitation strengthening.When Ti was added separately,the main precipitates were TiC and TiN.However,coarse TiC adversely affected the mechanical properties of steel.When double-stabilized with Ti and Nb,coarse TiC was replaced by fine NbC.The type of precipitation was altered,and precipitation and solid solution strengthening occurred.Therefore,the tensile strength and plastic strain ratio(r-value) improved to 433.60 MPa and 1.37,respectively.展开更多
The nanometer-size carbides formed in ferrite matrix of Nb-Ti microalloyed steel at different finishing cooling temperatures and holding time have been investigated. The characteristics of nanometer-size carbides in f...The nanometer-size carbides formed in ferrite matrix of Nb-Ti microalloyed steel at different finishing cooling temperatures and holding time have been investigated. The characteristics of nanometer-size carbides in ferrite were observed by transmission electron microscopy, and mechanical properties of ferrite were detected by a nano-hardness tester. The results showed that interphase precipitation and diffusion precipitation were observed at different finishing cooling temperatures, and the interphase precipitation was planar and curved. Sheet spacing of inter-phase precipitation increased with the increase of finishing cooling temperature and changed a little when holding for 50--1000 s. Interphase precipitation shows higher nano-hardness at 640℃ compared with diffusion precipitation at 600℃, and the contribution of interphase precipitation to the mechanical properties of ferrite was larger than that of diffusion precipitation.展开更多
The effect of rare earths(RE) on purifying molten steels, modifying inclusion and micro-alloying are studied in J55 steel. The results show that RE improves the transverse impact energy and increases the resistance of...The effect of rare earths(RE) on purifying molten steels, modifying inclusion and micro-alloying are studied in J55 steel. The results show that RE improves the transverse impact energy and increases the resistance of perforation cracking. The extent on modifying MnS and Al2O3 inclusions is dependent on the activity ratios of RE to Mn and RE to Al. The(a(RE). a(s))/(a(o) . a(Al)) value determines the relative amount of REAlO(3) and RE(2)O(2)S and the properties of steel. RE segregation on grain boundary reduces the segregation of phosphorus and sulfur there.展开更多
The strain-induced precipitation behavior of titanium micro-alloyed steel was examined through the stress relaxation method.In addition,the relationship between strain-induced precipitation and isothermal precipitatio...The strain-induced precipitation behavior of titanium micro-alloyed steel was examined through the stress relaxation method.In addition,the relationship between strain-induced precipitation and isothermal precipitation was explored.The findings revealed that the strain-induced precipitation and recrystallization processes of titanium micro-alloyed steel coexist and compete at the same time.The results also showed that the recrystallization process was inhibited with straininduced precipitation.Moreover,a large amount of nano-sized TiC particles precipitated in Ti micro-alloyed steel.Notably,the strain-induced precipitated TiC had a size of 10 nm and isothermally precipitated TiC had a size of 3–6 nm.Additionally,there was a clear competitive relationship between strain-induced precipitation and isothermal precipitation.The findings also showed that strain-induced precipitation had an obvious effect on the refinement of austenite although the effect was not obvious on the increase in the yield strength.Furthermore,isothermal treatment was shown to be more advantageous than strain-induced precipitation.Finally,the major increase in the yield strength was mainly attributed to the precipitation strengthening of nano-sized TiC during isothermal precipitation.展开更多
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52274372 and 52201101)the National Key R&D Program of China(No.2021YFB3702404)the Fundamental Research Funds for the Central Universities(No.FRF-TP-22-013A1).
文摘This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved.
文摘The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation ratio and precipitation rate of vanadium in the specimensreach maximum respectively at 900, -825 and 825 deg C. There is still l0 percent-l7 percent ofvanadium precipitated when the deformation temperature decreases to 800-700 deg C. Vanadium largelyaffects the ductility of the steel in the low ductility temperature Region III. Embrittlement ofsteel with higher V content is severer in the region and the embrittlement extends to lowertemperature.
基金the National Natural Science Foundation of China(No.50474086,50334010)the Program for New Century Excellent Talents in Universities(No.NCET-04-0278)of the Ministry of Education
文摘The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.
基金Sponsored by the Major State Basic Research Development Program of China(Grant No.2010CB630801)
文摘The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.
文摘The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.
文摘Influence of different cooling rates on the microstructure and the precipitation behavior of Nb-Ti microalloyed steel was investigated by CSLM, OM, SEM and EDS. The results show that the precipitation process of carbonitrides can be in-situ observed by CSLM, and with the increase of the cooling rate, the distribution of precipitates changes from along the austenitic grain boundaries to within the grains. With the increase of the cooling rate, the proeutectoid ferritic film becomes smaller and smaller and then disappears, and the original austenitic grains become finer and finer. In order to obtain non-film like proeutectoid ferrites or non-chain like precipitates along the austenitic grain boundaries and finer austenitic grains,the cooling rate should be at least 5℃/s.
文摘Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austenite were discussed. Corresponding to parameter Z in the dynamic recrystallization diagram, parameterY was then introduced to simplify static recrystallization diagrams.
文摘Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.
文摘The hot rolling experiment investigates into the relationship between the microstructures and the mechanical properties of Nb-Ti microalloyed steels with various Ti contents. The results indicate that the effect of the bainite fraction of Nb-Ti microalloyed steels on the yield strength of the steels is not related to Ti content, while the slope of the Hall- Petch relationship decreases with the increase of Ti content. Accordingly, the Misra model for the yield strength of Nb-Ti microalloyed steels is modified, and the factors which cause the change in the slope of Hall-Petch relationship are discussed.
文摘In situ measurements of austenite grain growth were made at various temperatures in the range of 1273-1473 K with subsequent isothermal holding time of 3600 s for the Nb-Ti-bearing and Nb-Ti-free high carb on steel by using a confocal laser scanning microscope.The solid solute behavior of Nb-Ti carbides during austenitizing process was analyzed.The experimental results indicate that the austenite grains of both steels grow up gradually with increasing the heating temperature and holding time;the size and growth rate of austenite grain of Nb-Ti-bearing high carbon steel are much lower than those of Nb-Ti-free high carbon steel.A large amount of(Nb,Ti)(C,N)nanoparticles are observed in Nb-Tibearing steel,which retain the strong pinning effect on austenite grain boundary.The kinetics model of austenite grain growth of Nb-Ti-bearing steel during isothermal heat treatment is obtained and the predicted values calculated by using the model meet the experimental values very well.
文摘Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.
文摘Hot ductility of the Nb- and Ti-containing line-pipe steel CC slab specimens were measured under the sirain rate of 1 x 10-3/s. Three types of precipitates were found in the fractured specimens. One was the block-shaped coarse TiN particles precipitated at high temperature. Another type was the fine dynamic precipitation products precipitated at 950~900℃ which caused remarkable ductility reduction of the steel. The third type was the co-existed precipitates formed by fine Nb precipitates nucleating and growing on TiN paricles. Compared with Nb-containing steel which contains no Ti, there was no ductility drop for Nb- and Ti-containing steel at temperature between 850℃ and Ar3 and, the γ→α transformation inside the grain matrixes proceeded faster, which both improved the ductility of the steel in the low ductility temperature Region Ⅲ.
文摘Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.
文摘Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope.
基金supported by the National Natural Science Foundation of China(No.51504172)and(No.51474163)China Postdoctoral Science Foundation(No.2015M572212)
文摘Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(C,N) precipitates formed during the continuous casting of micro-alloyed steel. Based on Andersen-Grong equation, a coupling model of second phase precipitation and austenite grain growth has been established, and the influence of second precipitates on austenite grain growth under different cooling rates is discussed. Calculations show that the final sizes of austenite grains are 2.155, 1.244, 0.965, 0.847 and 0.686 mm, respectively, under the cooling rate of 1, 3, 5, 7, and 10 ℃·s^(-1), when ignoring the pinning effect of precipitation on austenite growth. Whereas, if taking the pinning effect into consideration, the grain growth remains stable from 1,350 ℃, the calculated final sizes of austenite grains are 1.46, 1.02, 0.80, 0.67 and 0.57 mm, respectively. The sizes of final Ti(C,N) precipitates are 137, 79, 61, 51 and 43 nm, respectively, with the increase of cooling rate from 1 to 10 ℃·s^(-1). Model validation shows that the austenite size under different cooling rates coincided with the calculation results. Finally, the corresponding measures to strengthen cooling intensity at elevated temperature are proposed to improve the ductility and transverse crack of slab.
基金This work was financially supported by the National Natural Science Foundation of China (No.59971008).
文摘The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns.
文摘The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy and X-ray diffraction analyses,tensile tests,and carbonitride extraction experiments were conducted to investigate the microscopic mechanisms.The results showed that the primary precipitates in SUS 430 ferritic stainless steel were Cr_(23)C_6,Mn_(23)C_6,and Cr_7C_3,and the primary strengthening mechanism was precipitation strengthening.When Ti was added separately,the main precipitates were TiC and TiN.However,coarse TiC adversely affected the mechanical properties of steel.When double-stabilized with Ti and Nb,coarse TiC was replaced by fine NbC.The type of precipitation was altered,and precipitation and solid solution strengthening occurred.Therefore,the tensile strength and plastic strain ratio(r-value) improved to 433.60 MPa and 1.37,respectively.
基金Item Sponsored by National Natural Science Foundation of China(51104046)Fundamental Research Funds for Central Universities of China(N120407001,N120807001)
文摘The nanometer-size carbides formed in ferrite matrix of Nb-Ti microalloyed steel at different finishing cooling temperatures and holding time have been investigated. The characteristics of nanometer-size carbides in ferrite were observed by transmission electron microscopy, and mechanical properties of ferrite were detected by a nano-hardness tester. The results showed that interphase precipitation and diffusion precipitation were observed at different finishing cooling temperatures, and the interphase precipitation was planar and curved. Sheet spacing of inter-phase precipitation increased with the increase of finishing cooling temperature and changed a little when holding for 50--1000 s. Interphase precipitation shows higher nano-hardness at 640℃ compared with diffusion precipitation at 600℃, and the contribution of interphase precipitation to the mechanical properties of ferrite was larger than that of diffusion precipitation.
文摘The effect of rare earths(RE) on purifying molten steels, modifying inclusion and micro-alloying are studied in J55 steel. The results show that RE improves the transverse impact energy and increases the resistance of perforation cracking. The extent on modifying MnS and Al2O3 inclusions is dependent on the activity ratios of RE to Mn and RE to Al. The(a(RE). a(s))/(a(o) . a(Al)) value determines the relative amount of REAlO(3) and RE(2)O(2)S and the properties of steel. RE segregation on grain boundary reduces the segregation of phosphorus and sulfur there.
文摘The strain-induced precipitation behavior of titanium micro-alloyed steel was examined through the stress relaxation method.In addition,the relationship between strain-induced precipitation and isothermal precipitation was explored.The findings revealed that the strain-induced precipitation and recrystallization processes of titanium micro-alloyed steel coexist and compete at the same time.The results also showed that the recrystallization process was inhibited with straininduced precipitation.Moreover,a large amount of nano-sized TiC particles precipitated in Ti micro-alloyed steel.Notably,the strain-induced precipitated TiC had a size of 10 nm and isothermally precipitated TiC had a size of 3–6 nm.Additionally,there was a clear competitive relationship between strain-induced precipitation and isothermal precipitation.The findings also showed that strain-induced precipitation had an obvious effect on the refinement of austenite although the effect was not obvious on the increase in the yield strength.Furthermore,isothermal treatment was shown to be more advantageous than strain-induced precipitation.Finally,the major increase in the yield strength was mainly attributed to the precipitation strengthening of nano-sized TiC during isothermal precipitation.