期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si
1
作者 Rong Zhu Yonggang Yang +4 位作者 Baozhong Zhang Borui Zhang Lei Li Yanxin Wu Zhenli Mi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1865-1875,共11页
This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel co... This work investigated the effect of Cr and Si on the mechanical properties and oxidation resistance of press hardened steel.Results indicated that the microstructure of the Cr-Si micro-alloyed press hardened steel consisted of lath martensite,M_(23)C_(6)carbides,and retained austenite.The retained austenite and carbides are responsible for the increase in elongation of the micro-alloyed steel.In addition,after oxidation at 930℃for 5 min,the thickness of the oxide scales on the Cr-Si micro-alloyed press hardened steel is less than 5μm,much thinner than 45.50μm-thick oxide scales on 22MnB5.The oxide scales of the Cr-Si micro-alloyed steel are composed of Fe_(2)O_(3),Fe_(3)O_(4),mixed spinel oxide(FeCr_(2)O_(4)and Fe_(2)SiO_(4)),and amorphous SiO_(2).Adding Cr and Si significantly reduces the thickness of the oxide scales and prevents the generation of the FeO phase.Due to the increase of spinel FeCr_(2)O_(4)and Fe_(2)SiO_(4)phase in the inner oxide scale and the amorphous SiO_(2)close to the substrate,the oxidation resistance of the Cr-Si micro-alloyed press hardened steel is improved. 展开更多
关键词 Cr-Si micro-alloyed press hardened steel mechanical properties oxidation resistance amorphous SiO_(2)
下载PDF
Hot Ductility of Vanadium Micro-alloying Steel Continuous Casting Slabs
2
作者 XinhuaWang DexinDu 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期9-12,共4页
The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation rati... The hot ductility of the V-containing micro-alloying steel CC (continuouscasting) slabs and precipitation of vanadium carbide in the tensile specimens were investigated. Theresults indicate that the precipitation ratio and precipitation rate of vanadium in the specimensreach maximum respectively at 900, -825 and 825 deg C. There is still l0 percent-l7 percent ofvanadium precipitated when the deformation temperature decreases to 800-700 deg C. Vanadium largelyaffects the ductility of the steel in the low ductility temperature Region III. Embrittlement ofsteel with higher V content is severer in the region and the embrittlement extends to lowertemperature. 展开更多
关键词 V micro-alloying steel CC slab hot ductility CARBIDE NITRIDE PRECIPITATION
下载PDF
Dynamic Recrystallization Behaviour of Nb-Ti Microalloyed Steels 被引量:3
3
作者 MA Liqiang LIU Zhenyu +2 位作者 JIAO Sihai YUAN Xiangqian WU Di 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期551-557,共7页
The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX ... The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force. 展开更多
关键词 nb-ti microalloyed steels dynamic recrystallization activation energy of deformation dynamic precipitation
下载PDF
Effects of Quenching Process on Microstructure and Mechanical Properties of Low Carbon Nb-Ti Microalloyed Steel 被引量:2
4
作者 Wen-Zhen Xia Xian-Ming Zhao +1 位作者 Xiao-Ming Zhang Di Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期73-77,共5页
The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high... The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively. 展开更多
关键词 low carbon nb-ti mieroalloyed steel quenching process austenite grain growth model microstructure and mechanical properties
下载PDF
Effect of Mo on the continuous cooling transformation behavior of Nb-Ti micro-alloyed low carbon steel
5
作者 LI Bing ZHENG Lei 《Baosteel Technical Research》 CAS 2011年第3期46-50,共5页
The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas... The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively. 展开更多
关键词 micro-alloyed steel MO continuous cooling TRANSFORMATION
下载PDF
Influence of cooling rates on the precipitation behavior and microstructure of Nb-Ti microalloyed steel
6
作者 ZHANG Li ZHAO Su 《Baosteel Technical Research》 CAS 2012年第3期8-12,共5页
Influence of different cooling rates on the microstructure and the precipitation behavior of Nb-Ti microalloyed steel was investigated by CSLM, OM, SEM and EDS. The results show that the precipitation process of carbo... Influence of different cooling rates on the microstructure and the precipitation behavior of Nb-Ti microalloyed steel was investigated by CSLM, OM, SEM and EDS. The results show that the precipitation process of carbonitrides can be in-situ observed by CSLM, and with the increase of the cooling rate, the distribution of precipitates changes from along the austenitic grain boundaries to within the grains. With the increase of the cooling rate, the proeutectoid ferritic film becomes smaller and smaller and then disappears, and the original austenitic grains become finer and finer. In order to obtain non-film like proeutectoid ferrites or non-chain like precipitates along the austenitic grain boundaries and finer austenitic grains,the cooling rate should be at least 5℃/s. 展开更多
关键词 nb-ti microalloyed steel cooling rate PRECIPITATION MICROSTRUCTURE
下载PDF
Static Recrystallization Behavior of Hot Deformed Austenite for Micro-Alloyed Steel
7
作者 Jie HUANG Zhou XU Xin XING 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期117-118,共2页
Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperat... Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austenite were discussed. Corresponding to parameter Z in the dynamic recrystallization diagram, parameterY was then introduced to simplify static recrystallization diagrams. 展开更多
关键词 Micro-alloyed steel HOT DEFORMATION of austenite STATIC RECRYSTALLIZATION
下载PDF
Microstructures and Mechanical Properties of Nb-Ti Bearing Hot-rolled TRIP Steels 被引量:2
8
作者 Yu CHEN Guoyi TANG +5 位作者 Haoyang TIAN Feipeng LI Yu ZHANG Lihui WANG Zhaojun DENG Dexing LUO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期759-762,共4页
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ... Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation. 展开更多
关键词 nb-ti HOT-ROLLING TRIP-assisted steel
下载PDF
Effect of Ti content on the yield strength of Nb-Ti microalloyed steels 被引量:1
9
作者 YUAN Xiangqian JIAO Sihai 《Baosteel Technical Research》 CAS 2009年第4期53-55,共3页
The hot rolling experiment investigates into the relationship between the microstructures and the mechanical properties of Nb-Ti microalloyed steels with various Ti contents. The results indicate that the effect of th... The hot rolling experiment investigates into the relationship between the microstructures and the mechanical properties of Nb-Ti microalloyed steels with various Ti contents. The results indicate that the effect of the bainite fraction of Nb-Ti microalloyed steels on the yield strength of the steels is not related to Ti content, while the slope of the Hall- Petch relationship decreases with the increase of Ti content. Accordingly, the Misra model for the yield strength of Nb-Ti microalloyed steels is modified, and the factors which cause the change in the slope of Hall-Petch relationship are discussed. 展开更多
关键词 nb-ti microalloyed steel yield strength HALL-PETCH
下载PDF
In situ observation and modeling of austenite grain growth in a Nb-Ti-bearing high carbon steel 被引量:2
10
作者 Guang Ji Xiu-hua Gao +1 位作者 Zhen-guang Liu Ke Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第3期292-300,共9页
In situ measurements of austenite grain growth were made at various temperatures in the range of 1273-1473 K with subsequent isothermal holding time of 3600 s for the Nb-Ti-bearing and Nb-Ti-free high carb on steel by... In situ measurements of austenite grain growth were made at various temperatures in the range of 1273-1473 K with subsequent isothermal holding time of 3600 s for the Nb-Ti-bearing and Nb-Ti-free high carb on steel by using a confocal laser scanning microscope.The solid solute behavior of Nb-Ti carbides during austenitizing process was analyzed.The experimental results indicate that the austenite grains of both steels grow up gradually with increasing the heating temperature and holding time;the size and growth rate of austenite grain of Nb-Ti-bearing high carbon steel are much lower than those of Nb-Ti-free high carbon steel.A large amount of(Nb,Ti)(C,N)nanoparticles are observed in Nb-Tibearing steel,which retain the strong pinning effect on austenite grain boundary.The kinetics model of austenite grain growth of Nb-Ti-bearing steel during isothermal heat treatment is obtained and the predicted values calculated by using the model meet the experimental values very well. 展开更多
关键词 Con FOCAL laser scanning microscope nb-ti MICROALLOYING High carb on steel GRAIN GROWTH Nanoparticle GRAIN GROWTH model
原文传递
Development of Tailored Structure and Tensile Properties of Thermomechanical Treated Micro Alloyed Low Carbon Dual Phase Steel 被引量:1
11
作者 Hany Khalifa G. M. Megahed +1 位作者 Taher El-Bitar Mohamed A. Taha 《Materials Sciences and Applications》 2020年第12期851-866,共16页
Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing pa... Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">&deg;</span>C to 840<span style="white-space:nowrap;">&deg;</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">&deg;</span>C to 180<span style="white-space:nowrap;">&deg;</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel. 展开更多
关键词 Micro-Alloyed steel Dual Phase steel Thermomechanical Simulation Thermomechanical Rolling Compact Slab Production CSP Hot Strip Mill HSM
下载PDF
Carbide and Nitride Precipitation in High Temperature TensiledSpecimens and Hot Ductility of Nb-and Ti-ContainingSteel CC Slabs
12
作者 WU Dongmei WANG Xinhua +5 位作者 LIU Xinyu WANG Wanjun FEI Huichun ZHANG Li YE Jinwei (Metallurgy Engineering School, USTB, Beijing 100083, China) (Baoshan Iron and Steel Co., Shanghai 200091) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期21-25,共5页
Hot ductility of the Nb- and Ti-containing line-pipe steel CC slab specimens were measured under the sirain rate of 1 x 10-3/s. Three types of precipitates were found in the fractured specimens. One was the block-shap... Hot ductility of the Nb- and Ti-containing line-pipe steel CC slab specimens were measured under the sirain rate of 1 x 10-3/s. Three types of precipitates were found in the fractured specimens. One was the block-shaped coarse TiN particles precipitated at high temperature. Another type was the fine dynamic precipitation products precipitated at 950~900℃ which caused remarkable ductility reduction of the steel. The third type was the co-existed precipitates formed by fine Nb precipitates nucleating and growing on TiN paricles. Compared with Nb-containing steel which contains no Ti, there was no ductility drop for Nb- and Ti-containing steel at temperature between 850℃ and Ar3 and, the γ→α transformation inside the grain matrixes proceeded faster, which both improved the ductility of the steel in the low ductility temperature Region Ⅲ. 展开更多
关键词 nb-ti micro alloying steel CC slab hot ductility carbides nitrides PRECIPITATION
下载PDF
Effect of Nb content on strength of Nb micro-alloyed steels
13
作者 YUAN Xiangqian XUE Peng +1 位作者 KONG Wei JIAO Sihai 《Baosteel Technical Research》 CAS 2011年第3期38-41,共4页
Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and th... Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions. 展开更多
关键词 hot rolling Nb micro-alloyed steel yield strength MODELLING ferrite grain size
下载PDF
Effects of Vanadium on Structure and Tensile Properties of Tempcore Steel Bars
14
作者 Hany Khalifa A. El-Kady 《Materials Sciences and Applications》 2022年第5期342-357,共16页
Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and co... Thermomechanical processing is a metallurgical operation to produce high-strength steel bars (rebars), through combining plastic deformation with thermal processes like heat treatment, water quenching, heating, and cooling at various rates into a single process. Ribbed reinforcing steel bars (rebars) are used for the reinforcement of concrete structures. Tempcore is a unique process to produce high-yield-strength rebars from mild steel without addition of a high weight percentage of costly alloying elements. The strength of rebar originates from the formation of a surface layer consisting of quenched and tempered martensite that surrounds a core composed of ferrite and pearlite. The economic advantages of this process are significant in comparison to those processes requiring alloying elements or further metal working to improve the mechanical properties. However, when there is a limitation in the water-cooling capacity, the required volume fraction of the martensite layer can’t be accomplished particularly when rolling bigger diameters of 32 mm - 40 mm at a higher rolling speed to maintain high productivity. Accordingly, a small addition of microalloying elements vanadium or niobium could be used in combination with Tempcore process to obtain high-strength steel rebars. In this contribution, 0.06 weight percentage of vanadium is added to the Tempcore treated rebars to satisfy ASTM A 706 Standard of Rebar Grade 80 PSI [550 MPa]. In order to decrease the trials in the steel plant floor, thermodynamics equilibrium calculations are predicted by Thermo-Calc, CCT, TTT diagrams are calculated by JMat Pro and the kinetics evolution of the vanadium carbonitrides precipitates are predicted by the computational database Mat Calc. High yield strength and tensile strength are obtained due to the effect of fine dispersions of nanometer-scale vanadium carbonitrides precipitates inspected by transmission electron microscope. 展开更多
关键词 Tempcore Micro-Alloyed steel Precipitation Hardening Thermodynamics of Equilibrium Kinetics of Formation
下载PDF
Influence of Ti(C,N)precipitates on austenite growth of micro-alloyed steel during continuous casting 被引量:2
15
作者 Liu Yang Yang Li +1 位作者 Zheng-liang Xue Chang-gui Cheng 《China Foundry》 SCIE 2017年第5期421-428,共8页
Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(... Austenite grain size is an important influence factor for ductility of steel at high temperatures during continuous casting. Thermodynamic and kinetics calculations were performed to analyze the characteristics of Ti(C,N) precipitates formed during the continuous casting of micro-alloyed steel. Based on Andersen-Grong equation, a coupling model of second phase precipitation and austenite grain growth has been established, and the influence of second precipitates on austenite grain growth under different cooling rates is discussed. Calculations show that the final sizes of austenite grains are 2.155, 1.244, 0.965, 0.847 and 0.686 mm, respectively, under the cooling rate of 1, 3, 5, 7, and 10 ℃·s^(-1), when ignoring the pinning effect of precipitation on austenite growth. Whereas, if taking the pinning effect into consideration, the grain growth remains stable from 1,350 ℃, the calculated final sizes of austenite grains are 1.46, 1.02, 0.80, 0.67 and 0.57 mm, respectively. The sizes of final Ti(C,N) precipitates are 137, 79, 61, 51 and 43 nm, respectively, with the increase of cooling rate from 1 to 10 ℃·s^(-1). Model validation shows that the austenite size under different cooling rates coincided with the calculation results. Finally, the corresponding measures to strengthen cooling intensity at elevated temperature are proposed to improve the ductility and transverse crack of slab. 展开更多
关键词 micro-alloyed steel TiC N precipitation austenite grain pinning effect
下载PDF
Morphology and orientation relationship of VC precipitates in HSLA steel 被引量:1
16
作者 Shijian Yan Xiaoping Liu Wenhuai Tian 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期420-423,共4页
The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composit... The morphology and distribution of VC precipitates in HSLA steel as well as the orientation relationship between VC precipitate and α-Fe were studied by transmission electron microscopy (TEM). The chemical composition of the VC precipitate was analyzed qualitatively by using analytical electron microscopy (AEM) equipped with an energy dispersive spectrum (EDS) system. The VC precipitate is needle-like in shape with a size of about 10 nm in length and is homogeneously dispersed in the α-Fe matrix. The smaller lattice misfit along the 〈100〉 lattice direction of α-Fe matrix leads to VC precipitate forming with its long axes nearly parallel to the 〈100〉 lattice direction of α-Fe matrix. It is confirmed that the orientation relationship between VC precipitate and α- Fe is the "N-W" orientation relation by selected area electron diffraction (SAED) patterns. 展开更多
关键词 VANADIUM micro-alloyed steels VC precipitation orientation relationship
下载PDF
Effect of Nb and Ti on second-phase precipitation and mechanical properties of 430 ferritic stainless steel
17
作者 ZHANG Xin DU Wei HUANG Xunzeng 《Baosteel Technical Research》 CAS 2015年第4期32-39,共8页
The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy... The influence of Ti and Nb on the microstructure,mechanical properties,and second-phase precipitation of 430 ferritic stainless steel was investigated.In addition to optical microscopy,transmission electron microscopy and X-ray diffraction analyses,tensile tests,and carbonitride extraction experiments were conducted to investigate the microscopic mechanisms.The results showed that the primary precipitates in SUS 430 ferritic stainless steel were Cr_(23)C_6,Mn_(23)C_6,and Cr_7C_3,and the primary strengthening mechanism was precipitation strengthening.When Ti was added separately,the main precipitates were TiC and TiN.However,coarse TiC adversely affected the mechanical properties of steel.When double-stabilized with Ti and Nb,coarse TiC was replaced by fine NbC.The type of precipitation was altered,and precipitation and solid solution strengthening occurred.Therefore,the tensile strength and plastic strain ratio(r-value) improved to 433.60 MPa and 1.37,respectively. 展开更多
关键词 ferritic stainless steel mechanical properties nb-ti stabilized microstructure
下载PDF
Influence of Finishing Cooling Temperature and Holding Time on Nanometer-size Carbide of Nb-Ti Microalloyed Steel 被引量:3
18
作者 Hai-long YI Yang XU +2 位作者 Ming-xue SUN Zhen-yu LIU Guo-dong WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第4期433-438,共6页
The nanometer-size carbides formed in ferrite matrix of Nb-Ti microalloyed steel at different finishing cooling temperatures and holding time have been investigated. The characteristics of nanometer-size carbides in f... The nanometer-size carbides formed in ferrite matrix of Nb-Ti microalloyed steel at different finishing cooling temperatures and holding time have been investigated. The characteristics of nanometer-size carbides in ferrite were observed by transmission electron microscopy, and mechanical properties of ferrite were detected by a nano-hardness tester. The results showed that interphase precipitation and diffusion precipitation were observed at different finishing cooling temperatures, and the interphase precipitation was planar and curved. Sheet spacing of inter-phase precipitation increased with the increase of finishing cooling temperature and changed a little when holding for 50--1000 s. Interphase precipitation shows higher nano-hardness at 640℃ compared with diffusion precipitation at 600℃, and the contribution of interphase precipitation to the mechanical properties of ferrite was larger than that of diffusion precipitation. 展开更多
关键词 nanometer-size arbide nb-ti microalloyed steel interphase precipitation diffusion precipitation
原文传递
Application of Rare Earths in Oil Country Tubular Goods 被引量:1
19
作者 林勤 姚庭杰 +4 位作者 刘爱生 陈宁 叶文 余宗森 卢先利 《Journal of Rare Earths》 SCIE EI CAS CSCD 1996年第3期189-194,共6页
The effect of rare earths(RE) on purifying molten steels, modifying inclusion and micro-alloying are studied in J55 steel. The results show that RE improves the transverse impact energy and increases the resistance of... The effect of rare earths(RE) on purifying molten steels, modifying inclusion and micro-alloying are studied in J55 steel. The results show that RE improves the transverse impact energy and increases the resistance of perforation cracking. The extent on modifying MnS and Al2O3 inclusions is dependent on the activity ratios of RE to Mn and RE to Al. The(a(RE). a(s))/(a(o) . a(Al)) value determines the relative amount of REAlO(3) and RE(2)O(2)S and the properties of steel. RE segregation on grain boundary reduces the segregation of phosphorus and sulfur there. 展开更多
关键词 RE purifying molten steel modifying inclusion micro-alloying J55 steel
下载PDF
Effect of strain-induced precipitation on microstructure and properties of titanium micro-alloyed steels 被引量:1
20
作者 Xiang-dong Huo Zhi-wei Lv +3 位作者 Chen Ao Lie-jun Li Ji-nian Xia Song-jun Chen 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第6期983-993,共11页
The strain-induced precipitation behavior of titanium micro-alloyed steel was examined through the stress relaxation method.In addition,the relationship between strain-induced precipitation and isothermal precipitatio... The strain-induced precipitation behavior of titanium micro-alloyed steel was examined through the stress relaxation method.In addition,the relationship between strain-induced precipitation and isothermal precipitation was explored.The findings revealed that the strain-induced precipitation and recrystallization processes of titanium micro-alloyed steel coexist and compete at the same time.The results also showed that the recrystallization process was inhibited with straininduced precipitation.Moreover,a large amount of nano-sized TiC particles precipitated in Ti micro-alloyed steel.Notably,the strain-induced precipitated TiC had a size of 10 nm and isothermally precipitated TiC had a size of 3–6 nm.Additionally,there was a clear competitive relationship between strain-induced precipitation and isothermal precipitation.The findings also showed that strain-induced precipitation had an obvious effect on the refinement of austenite although the effect was not obvious on the increase in the yield strength.Furthermore,isothermal treatment was shown to be more advantageous than strain-induced precipitation.Finally,the major increase in the yield strength was mainly attributed to the precipitation strengthening of nano-sized TiC during isothermal precipitation. 展开更多
关键词 Ti micro-alloyed steel Stress RELAXATION Nanometer-carbide Strain-induced PRECIPITATION ISOTHERMAL PRECIPITATION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部