Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate ...Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.展开更多
Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD...Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD (electron backscattered diffraction). It is indicated that during deformation-enhanced ferrite transformation (DEFT) in Nb-microalloyed steel, the incubation period is prolonged, and the higher strain is needed to accomplish ferrite transformation. Therefore, the transformation kinetics curves move to high strain parallelly; and the transformation kinetics curves of Nb-microalloyed steel can be divided into three stages. At the fast stage, the solute drag effect of Nb and the consumption of strain energy for the dynamic precipitation of Nb(CN) led to a long incubation period, and at the second stage, ferrite transformation was accelerated significantly and fine Nb(CN) precipitates restrict the grain growth of ferrite effectively. The results also showed that DEFT in Nb-microalloyed steel is still a nucleation dominated process, and during the microstructure evolution the interchange of 〈001〉 and 〈111〉 texture was obtained.展开更多
Based on welding thermal simulation on Nb-microaUoyed XSO pipeline stee! using Gleeble-3500 thermal simulation equipment, microstlttcture and impact toughness in coarse grain heat-affected zone (CGHAZ) under differe...Based on welding thermal simulation on Nb-microaUoyed XSO pipeline stee! using Gleeble-3500 thermal simulation equipment, microstlttcture and impact toughness in coarse grain heat-affected zone (CGHAZ) under different welding parameters were investigated in this paper. The results show that high heat inputs with low preheats or low heat inputs with high preheats should be applied to achieve high impact toughness. Coarse original austenite grains may lower impact toughness. CGHAZ microstructure is mostly composed of upper bainite, granular bainite and lath bainite. The phase composition of microstructure and the quantity, size, shape of M/A constituents both have effects on impact toughness.展开更多
To design the controlled hot rolling and thermomechanical processes of microalloyed steels,it is essential to know the various critical transformation temperatures like the grain coarsening temperature (T gc),the non-...To design the controlled hot rolling and thermomechanical processes of microalloyed steels,it is essential to know the various critical transformation temperatures like the grain coarsening temperature (T gc),the non-recrystallization temperature (T nr),the start of austenite-to-ferrite transformation (A r3),and the finish of the austenite-to-ferrite transformation (A r1).In this work,the heat treatment and continuous cooling compression (CCC) testing were performed to determine the critical temperatures of a Nb-microalloyed steel.Results obtained from the CCC testing on the strain-stress curves were confirmed by metallographic tests.To carry out the CCC testing,T nr equals 960℃;A r3 equals 830℃ and A r1 equals 665℃ were determined.In addition,to specify the grain coarsening temperature that it usually occurs during reheating the slabs,seven different reheating temperatures between 1000 to 1300℃ with 50℃ increments for the soaking treatment were chosen.By soaking the specimens in furnace,the grain coarsening temperature (T gc) was obtained about the temperature of 1250 ℃.Moreover,it was observed that increasing the reheating temperatures causes more decline of the precipitates percentage.Therefore,the temperature range of 1200 to 1250℃ is recommended to reheat these types of steels.展开更多
The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during ...The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during deformation of undercooled austenite was investigated. It was found that as compared with Nb-free steel, the transformation incubation period of Nb-bearing steel was prolonged and the transformation kinetics curves parallelly moved to higher strain because of the solute Nb drag effect. Studies on kinetics also showed that the deformation-enhanced ferrite transformation (DEFT) of the two steels were composed of three stages, which can be expressed by the J-M-A equations individually. However, the parameter n related to the mode of nucleation and growth is somewhat different in the first and second stages of the two steels, and the same in the third stage for both the steels corresponding to the nucleation Of retained austenite.展开更多
Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-micro...Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.展开更多
基金Item Sponsored by High Technology Development Programof China (863) (2001AA332020) and National Natural ScienceFoundation of China (50271015)
文摘Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.
基金This work was financially supported by the National High-Tech Research and Development Program of China ("863" Program)(No.2001AA332020).
文摘Microstructure evolution during deformation of undercooled austenite at 760℃ was investigated in Nb-microalloyed steel by using SEM (scanning electron microscope), TEM (transmission electron microscope), and EBSD (electron backscattered diffraction). It is indicated that during deformation-enhanced ferrite transformation (DEFT) in Nb-microalloyed steel, the incubation period is prolonged, and the higher strain is needed to accomplish ferrite transformation. Therefore, the transformation kinetics curves move to high strain parallelly; and the transformation kinetics curves of Nb-microalloyed steel can be divided into three stages. At the fast stage, the solute drag effect of Nb and the consumption of strain energy for the dynamic precipitation of Nb(CN) led to a long incubation period, and at the second stage, ferrite transformation was accelerated significantly and fine Nb(CN) precipitates restrict the grain growth of ferrite effectively. The results also showed that DEFT in Nb-microalloyed steel is still a nucleation dominated process, and during the microstructure evolution the interchange of 〈001〉 and 〈111〉 texture was obtained.
文摘Based on welding thermal simulation on Nb-microaUoyed XSO pipeline stee! using Gleeble-3500 thermal simulation equipment, microstlttcture and impact toughness in coarse grain heat-affected zone (CGHAZ) under different welding parameters were investigated in this paper. The results show that high heat inputs with low preheats or low heat inputs with high preheats should be applied to achieve high impact toughness. Coarse original austenite grains may lower impact toughness. CGHAZ microstructure is mostly composed of upper bainite, granular bainite and lath bainite. The phase composition of microstructure and the quantity, size, shape of M/A constituents both have effects on impact toughness.
文摘To design the controlled hot rolling and thermomechanical processes of microalloyed steels,it is essential to know the various critical transformation temperatures like the grain coarsening temperature (T gc),the non-recrystallization temperature (T nr),the start of austenite-to-ferrite transformation (A r3),and the finish of the austenite-to-ferrite transformation (A r1).In this work,the heat treatment and continuous cooling compression (CCC) testing were performed to determine the critical temperatures of a Nb-microalloyed steel.Results obtained from the CCC testing on the strain-stress curves were confirmed by metallographic tests.To carry out the CCC testing,T nr equals 960℃;A r3 equals 830℃ and A r1 equals 665℃ were determined.In addition,to specify the grain coarsening temperature that it usually occurs during reheating the slabs,seven different reheating temperatures between 1000 to 1300℃ with 50℃ increments for the soaking treatment were chosen.By soaking the specimens in furnace,the grain coarsening temperature (T gc) was obtained about the temperature of 1250 ℃.Moreover,it was observed that increasing the reheating temperatures causes more decline of the precipitates percentage.Therefore,the temperature range of 1200 to 1250℃ is recommended to reheat these types of steels.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2001AA332020).
文摘The hot compression tests using Gleeble 1500 were performed by varying the true strain up to 1.6 (80% reduction) in Nbfree and Nb-microalloyed steels. The effect of Nb addition on the transformation kinetics during deformation of undercooled austenite was investigated. It was found that as compared with Nb-free steel, the transformation incubation period of Nb-bearing steel was prolonged and the transformation kinetics curves parallelly moved to higher strain because of the solute Nb drag effect. Studies on kinetics also showed that the deformation-enhanced ferrite transformation (DEFT) of the two steels were composed of three stages, which can be expressed by the J-M-A equations individually. However, the parameter n related to the mode of nucleation and growth is somewhat different in the first and second stages of the two steels, and the same in the third stage for both the steels corresponding to the nucleation Of retained austenite.
文摘Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.