Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, toget...Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.展开更多
氧化铌作为一种重要的氧化物薄膜材料在可见到中波红外波段广泛应用。基于电子束加热蒸发方法,研究了不同温度条件下一定厚度的氧化铌薄膜的微观结构及特性,通过Kim振动模型拟合不同工艺条件下氧化铌的光学常数色散分布,采用X射线衍射仪...氧化铌作为一种重要的氧化物薄膜材料在可见到中波红外波段广泛应用。基于电子束加热蒸发方法,研究了不同温度条件下一定厚度的氧化铌薄膜的微观结构及特性,通过Kim振动模型拟合不同工艺条件下氧化铌的光学常数色散分布,采用X射线衍射仪(X-Ray Diffraction,XRD)测试薄膜的结晶态,并用原子力显微镜(Atomic Force Microscope,AFM)检测薄膜表面粗糙度,分析温度对膜层表面粗糙度的影响规律。展开更多
The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO2 and Nb2O5approximately 10 nm in thickness deposited onto FTO substrates. The exper...The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO2 and Nb2O5approximately 10 nm in thickness deposited onto FTO substrates. The experimental results demonstrated that the thin oxide layer serving to separate the electron collecting electrode and the photoactive film of a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) was necessary to promote the formation of continuous uniform PCBM film to block holes in P3HT from being recombined with electrons in collecting electrode. A use of TiO2 buffer layer leads to power conversion efficiency as high as 2.8%. As for Nb2O5, in spite the fact that its conduction band is higher than the LUMO level of PCBM polymer acting as electron transport material, a power conversion of 2.7%, which was only slightly different from the 2.8% achieved for the cell employing TiO2. These experimental results suggest a tunneling mechanism for the electrons to transport from the PCBM to collecting electrode over the oxide film, instead of a diffusion through the oxide film arising from either energy or concentration difference of the photogenerated electrons.展开更多
文摘Nano sized powders of TiO2 (titanium dioxide) and Nb2O5 (Niobium (V) oxide) were used to fabricate TiO2/Nb2O5 composites thin films by EPD (electrophoretic deposition) technique. The metal oxide powders, together with magnesium nitrate hexahydrate pellets, were suspended in propan-2-ol inside an EPD cell. The electrodes, placed 1.2 cm apart, were partially immersed in the suspension and a DC potential applied across them. Key EPD process parameters, which include applied DC electric field, deposition time and solid concentration in suspension, were optimized through visual inspection and from UV-Vis-NIR spectrophotometer spectra. The highest (55%) transmittance was obtained for films with deposition time of 90 s, powder concentration of 0.01 g/40 mL, and 35 V DC (direct current) voltage. XRD micrographs confirmed that TiO2 and Nb2O5 particles were presented in the composite film. SEM (scanning electron microscope) micrographs of the composite electrode thin films showed that porous films of high quality with well controlled morphology were deposited by using the EPD technique.
文摘氧化铌作为一种重要的氧化物薄膜材料在可见到中波红外波段广泛应用。基于电子束加热蒸发方法,研究了不同温度条件下一定厚度的氧化铌薄膜的微观结构及特性,通过Kim振动模型拟合不同工艺条件下氧化铌的光学常数色散分布,采用X射线衍射仪(X-Ray Diffraction,XRD)测试薄膜的结晶态,并用原子力显微镜(Atomic Force Microscope,AFM)检测薄膜表面粗糙度,分析温度对膜层表面粗糙度的影响规律。
文摘The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO2 and Nb2O5approximately 10 nm in thickness deposited onto FTO substrates. The experimental results demonstrated that the thin oxide layer serving to separate the electron collecting electrode and the photoactive film of a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) was necessary to promote the formation of continuous uniform PCBM film to block holes in P3HT from being recombined with electrons in collecting electrode. A use of TiO2 buffer layer leads to power conversion efficiency as high as 2.8%. As for Nb2O5, in spite the fact that its conduction band is higher than the LUMO level of PCBM polymer acting as electron transport material, a power conversion of 2.7%, which was only slightly different from the 2.8% achieved for the cell employing TiO2. These experimental results suggest a tunneling mechanism for the electrons to transport from the PCBM to collecting electrode over the oxide film, instead of a diffusion through the oxide film arising from either energy or concentration difference of the photogenerated electrons.