The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of...The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of states, charge density, and heats of formation of Nb50+xRu50-x βphase. The results show that an increase in Nb content increases the stability of Nbso+xRu50-x β phase, leading to a significant decrease of the β to β ′martensitic transformation temperature. In addition, the mechanism of the effects of Nb content on phase stability and martensitic transformation temperature is studied on the basis of electronic structure.展开更多
基金Project supported by the Youth Top-notch Innovative Talents Program of Harbin University of Science and Technology
文摘The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of states, charge density, and heats of formation of Nb50+xRu50-x βphase. The results show that an increase in Nb content increases the stability of Nbso+xRu50-x β phase, leading to a significant decrease of the β to β ′martensitic transformation temperature. In addition, the mechanism of the effects of Nb content on phase stability and martensitic transformation temperature is studied on the basis of electronic structure.