Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(...Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).展开更多
In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)an...In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.展开更多
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金National Natural Science Foundation of China(Nos.82171030,81870678)Natural Science Foundation of Hunan Province,China(No.2021JJ30925)+1 种基金Health Commission of Hunan Province,China(No.B202307026146)Natural Science Foundation of Hainan Province,China(No.821QN1005)。
基金supported by the National Natural Science Foundation of China(No.51802163)the Natural Science Foundation of Henan Province of China(No.222300420252)the Natural Science Foundation of Henan Department of Education(No.20A480004).
文摘Orthorhombic Nb_(2)O_(5)(T-Nb_(2)O_(5))is attractive for fast-charging Li-ion batteries,but it is still hard to realize rapid charge transfer kinetics for Li-ion storage.Herein,F-doped T-Nb_(2)O_(5) microflowers(F-Nb_(2)O_(5))are rationally synthesized through topotactic conversion.Specifically,F-Nb_(2)O_(5) are assembled by single-crystal nanoflakes with nearly 97%exposed(100)facet,which maximizes the exposure of the feasible Li^(+)transport pathways along loosely packed 4g atomic layers to the electrolytes,thus effectively enhancing the Li^(+)-intercalation performance.Besides,the band gap of F-Nb_(2)O_(5) is reduced to 2.87 eV due to the doping of F atoms,leading to enhanced electrical conductivity.The synergetic effects between tailored exposed crystal facets,F-doping,and ultrathin building blocks,speed up the Li^(+)/electron transfer kinetics and improve the pseudocapacitive properties of F-Nb_(2)O_(5).Therefore,F-Nb_(2)O_(5) exhibit superior rate capability(210.8 and 164.9 mAh g^(-1) at 1 and 10 C,respectively)and good long-term 10 C cycling performance(132.7 mAh g^(-1) after 1500 cycles).
基金financially supported by National Natural Science Foundation of China (Grant No. 22172144)Nature Science Foundation of Zhejiang Province (Grant No. LY20B030004)。
文摘In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.