In general, esterification reactions are favored by the increase in reaction temperature, excess of one of the reactants (usually alcohol), and additions of acid or basis catalysts. Esterification of oleic acid with m...In general, esterification reactions are favored by the increase in reaction temperature, excess of one of the reactants (usually alcohol), and additions of acid or basis catalysts. Esterification of oleic acid with methanol catalyzed by Nb2O5·nH2O calcined at different temperatures showed good conversion rates, especially at reaction temperature of 100°C and higher catalyst proportions. PLS calibration showed good results for predicting the amounts of methyl oleate in reaction products.展开更多
Commercially available niobium (V) oxide [Nb_2O_5], with barium acetate[Ba(CH_3COO)_2] and magnesium acetate [Mg(CH_3COO)_2·4H_2O] was used as the starting material inthe sol-gel process for preparing Ba(Mg_(1/3)...Commercially available niobium (V) oxide [Nb_2O_5], with barium acetate[Ba(CH_3COO)_2] and magnesium acetate [Mg(CH_3COO)_2·4H_2O] was used as the starting material inthe sol-gel process for preparing Ba(Mg_(1/3)Nb_(2/3))O_3 (BMN) nanopowders. At first, Nb_2O_5reacted with melting sodium hydroxide and transformed into dispersible oxide. The resulting glassysubstance after cooling was dispersed and washed several times in distilled water to remove the Na^+ions. The as-prepared colloidal Nb_2O_5·nH_2O was subsequently mixed with acetic solution ofbarium acetate and magnesium acetate according to the required molar proportions and followed bygelation. The ultrafine BMN powders were finally obtained after heat-treating the gel at 820℃ for 1h, and the as-sintered nanoceramics revealed a high relative density of 98.2%, and a high microwaveQ-factor, of 10397 at 1,45GHz.展开更多
Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic chara...Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.展开更多
Low-cost,high safety and environment-friendly aqueous energy storage systems(ESSs)are huge potential for grid-level energy storage,but the(de)intercalation of metal ions in the electrode materials(e.g.vanadium oxides)...Low-cost,high safety and environment-friendly aqueous energy storage systems(ESSs)are huge potential for grid-level energy storage,but the(de)intercalation of metal ions in the electrode materials(e.g.vanadium oxides)to obtain superior long-term cycling stability is a significant challenge.Herein,we demonstrate that polyvinyl alcohol(PVA)-assisted hydrated vanadium pentoxide/reduced graphene oxide(V_(2)O_(5)·n H_(2)O/r GO/PVA,denoted as the VGP)films enable long cycle stability and high capacity for the Li^(+)and Zn^(2+)storages in both the VGP//Li Cl(aq)//VGP and the VGP//Zn SO4(aq)//Zn cells.The binderfree VGP films are synthesized by a one-step hydrothermal method combination with the filtration.The extensive hydrogen bonds are formed among PVA,GO and H_(2)O,and they act as structural pillars and connect the adjacent layers as glue,which contributes to the ultrahigh specific capacitance and ultralong cyclic performance of Li^(+)and Zn^(2+)storage properties.As for Li^(+)storage,the binder-free VGP4 film(4mg PVA)electrode achieves the highest specific capacitance up to 1381 F g^(-1)at 1.0 A g^(-1)in the three-electrode system and 962 F g^(-1)at 1.0 A g^(-1)in the symmetric two-electrode system.It also behaves the outstanding cyclic performance with the capacitance retention of 96.5%after 15000 cycles in the three-electrode system and 99.7%after 25000 cycles in the symmetric two-electrode system.As for Zn^(2+)storage,the binder-free VGP4 film electrode exhibits the high specific capacity of 184 m A h g^(-1)at 0.5A g^(-1)in the VGP4//Zn SO4(aq)//Zn cell and the superb cycle performance of 98.5%after 25000 cycles.This work not only provides a new strategy for the construction of vanadium oxides composites and demonstrates the potential application of PVA-assisted binder-free film with excellent electrochemical properties,but also extends to construct other potential electrode materials for metal ion storage cells.展开更多
基金the Conselho Nacional de Desen-volvimento Científico e Tecnologico(CNPq),the Coor-denadoria de Aperfeicoamento de Pessoal do Nivel Superior(CAPES),the Fundacao de Amparoa Pesquisa do Espirito Santo(FAPES)and the Fundo de Apoio a Cien-cia e Tecnologia da Prefeitura de Vitoria(FACITEC)for financial support.
文摘In general, esterification reactions are favored by the increase in reaction temperature, excess of one of the reactants (usually alcohol), and additions of acid or basis catalysts. Esterification of oleic acid with methanol catalyzed by Nb2O5·nH2O calcined at different temperatures showed good conversion rates, especially at reaction temperature of 100°C and higher catalyst proportions. PLS calibration showed good results for predicting the amounts of methyl oleate in reaction products.
文摘Commercially available niobium (V) oxide [Nb_2O_5], with barium acetate[Ba(CH_3COO)_2] and magnesium acetate [Mg(CH_3COO)_2·4H_2O] was used as the starting material inthe sol-gel process for preparing Ba(Mg_(1/3)Nb_(2/3))O_3 (BMN) nanopowders. At first, Nb_2O_5reacted with melting sodium hydroxide and transformed into dispersible oxide. The resulting glassysubstance after cooling was dispersed and washed several times in distilled water to remove the Na^+ions. The as-prepared colloidal Nb_2O_5·nH_2O was subsequently mixed with acetic solution ofbarium acetate and magnesium acetate according to the required molar proportions and followed bygelation. The ultrafine BMN powders were finally obtained after heat-treating the gel at 820℃ for 1h, and the as-sintered nanoceramics revealed a high relative density of 98.2%, and a high microwaveQ-factor, of 10397 at 1,45GHz.
基金This work was supported by the National Science Foundation(CBET-1803256)Dr.C.Liu acknowledges the support from National Natural Science Foundation of China(52102277)the Fundamental Research Funds for the Central Universities,conducted by Tongji University.
文摘Vanadium oxides,par-ticularly hydrated forms like V_(2)O_(5)·nH_(2)O(VOH),stand out as promising cathode candidates for aqueous zinc ion batteries due to their adjustable layered structure,unique electronic characteristics,and high theoretical capacities.However,challenges such as vanadium dissolution,sluggish Zn^(2+)diffusion kinetics,and low operating voltage still hinder their direct application.In this study,we present a novel vanadium oxide([C_(6)H_(6)N(CH_(3))_(3)]_(1.08)V_(8)O_(20)·0.06H_(2)O,TMPA-VOH),developed by pre-inserting trimethylphenylammonium(TMPA+)cations into VOH.The incorporation of weakly polarized organic cations capitalizes on both ionic pre-intercalation and molecular pre-intercalation effects,resulting in a phase and morphology transition,an expansion of the interlayer distance,extrusion of weakly bonded interlayer water,and a substantial increase in V^(4+)content.These modifications synergistically reduce the electrostatic interactions between Zn^(2+)and the V-O lattice,enhancing structural stability and reaction kinetics during cycling.As a result,TMPA-VOH achieves an elevated open circuit voltage and operation voltage,exhibits a large specific capacity(451 mAh g^(-1)at 0.1 A g^(-1))coupled with high energy efficiency(89%),the significantly-reduced battery polarization,and outstanding rate capability and cycling stability.The concept introduced in this study holds great promise for the development of high-performance oxide-based energy storage materials.
基金partially supported by the National Natural Science Foundation of China(Nos.21771030 and 51572201)the Natural Science Foundation of Liaoning Province(No.2020-MS113)the Fundamental Research Funds for the Central Universities(No.DUT18RC(6)008)。
文摘Low-cost,high safety and environment-friendly aqueous energy storage systems(ESSs)are huge potential for grid-level energy storage,but the(de)intercalation of metal ions in the electrode materials(e.g.vanadium oxides)to obtain superior long-term cycling stability is a significant challenge.Herein,we demonstrate that polyvinyl alcohol(PVA)-assisted hydrated vanadium pentoxide/reduced graphene oxide(V_(2)O_(5)·n H_(2)O/r GO/PVA,denoted as the VGP)films enable long cycle stability and high capacity for the Li^(+)and Zn^(2+)storages in both the VGP//Li Cl(aq)//VGP and the VGP//Zn SO4(aq)//Zn cells.The binderfree VGP films are synthesized by a one-step hydrothermal method combination with the filtration.The extensive hydrogen bonds are formed among PVA,GO and H_(2)O,and they act as structural pillars and connect the adjacent layers as glue,which contributes to the ultrahigh specific capacitance and ultralong cyclic performance of Li^(+)and Zn^(2+)storage properties.As for Li^(+)storage,the binder-free VGP4 film(4mg PVA)electrode achieves the highest specific capacitance up to 1381 F g^(-1)at 1.0 A g^(-1)in the three-electrode system and 962 F g^(-1)at 1.0 A g^(-1)in the symmetric two-electrode system.It also behaves the outstanding cyclic performance with the capacitance retention of 96.5%after 15000 cycles in the three-electrode system and 99.7%after 25000 cycles in the symmetric two-electrode system.As for Zn^(2+)storage,the binder-free VGP4 film electrode exhibits the high specific capacity of 184 m A h g^(-1)at 0.5A g^(-1)in the VGP4//Zn SO4(aq)//Zn cell and the superb cycle performance of 98.5%after 25000 cycles.This work not only provides a new strategy for the construction of vanadium oxides composites and demonstrates the potential application of PVA-assisted binder-free film with excellent electrochemical properties,but also extends to construct other potential electrode materials for metal ion storage cells.