The analysis of available Nd isotope data from the Tanzania Craton places important constraints on the crest-mantle separation ages,and events marking juvenile crustal addition and crustal recycling.Nd model ages date...The analysis of available Nd isotope data from the Tanzania Craton places important constraints on the crest-mantle separation ages,and events marking juvenile crustal addition and crustal recycling.Nd model ages date the oldest crust extraction to 3.16 Ga in the Tanzania Craton,although a rock record of such antiquity is yet to be found there.The most significant period of juvenile crustal addition as well as crustal recycling is 2.7-2.6 Ga.The Nd isotopes of marie samples show that chemical heterogeneity existed in the mantle beneath the Tanzania Craton,with some samples originating from significantly depleted mantle, and most samples originating from the mixture of primitive mantle and depleted mantle.The Nd isotope section reveals significant differences in Nd isotopes between the north eraton and central craton;compared to the north craton,the central craton yields a Nd model age that is approximately 100 Ma older, and its εNd(t)values are more negative,indicating that the two parts of the craton have different mantle source regions.Different types of granitoids are distributed in the Tanzania Craton,such as high-K and low-Al granite,ealc-alkaline granite,peraluminous granite and transitional types of tonalite-trondhjemite- granodiorites (TTGs).Most of the granitoids formed later than the marie rocks in syn-collision and postcollision events.展开更多
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1...The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.展开更多
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat...Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.展开更多
This paper presents a systematic study of major and trace elements and Sm-Nd isotopes in leucogranites closely related to uranium mineralization in the Gaudeanmus area, Namibia. The results illustrate that the uranife...This paper presents a systematic study of major and trace elements and Sm-Nd isotopes in leucogranites closely related to uranium mineralization in the Gaudeanmus area, Namibia. The results illustrate that the uraniferous leucogranites possess high SiO2 (68.8wt%-76.0wt%, average 73.1wt%) and K (4.05wt%-7.78wt%, average 5.94wt%) contents, and are sub-alkaline and metaluminous to weakly peraluminous, as reflected by A/CNK values of 0.96-1.07 with an average of 1.01. The leucogranites are rich in light rare earth elements (LREE/HREE = 2.53-7.71; (La/Yb)s = 2.14-10.40), have moderate Eu depletion and high Rb/Sr ratios (2.03-5.50 with an average of 4.36); meanwhile, they are enriched in Rb, K, Th, U and Pb, and depleted in Ba, Nb, Ta, and Sr. The tNd(t) values of uraninites range from -14.8 to -16.5, and the two-stage Nd model ages are 2.43-2.56 Ga. Detailed elemental and Sm-Nd isotopic geochemical characteristics suggest that the leucogranites were formed in a post- orogenic extensional environment. The U-rich pre-Damara basement was the main source of uranium during the primary mineralization event, which is disseminated in leucogranites, whereas the uranium mineralization in veins possibly resulted from remobilization of the primary uranium minerals.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history...Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.展开更多
Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn a...Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.展开更多
The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has bee...The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.展开更多
The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the lat...The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.展开更多
The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small u...The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.展开更多
Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high S...Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.展开更多
Large plutons and dyke networks of Miocene leucogranite, magnificently exposed in Makalu, Nuptse and Cho Oyu, occur in the Cho—Oyu—Everest—Makalu Range at the top of the Higher Himalayan Crystalline (HHC) nappe and...Large plutons and dyke networks of Miocene leucogranite, magnificently exposed in Makalu, Nuptse and Cho Oyu, occur in the Cho—Oyu—Everest—Makalu Range at the top of the Higher Himalayan Crystalline (HHC) nappe and along the South Tibetan Detachment (STD). In the Kharta\|Dzakar Chu area, in the western limb of the Arun transverse anticline, discordant leucogranite dykes were found in the Precambrian—Cambrian (?) sediments of the Tibetan Series just above the STD (North Col Formation), throughout the HHC nappe, in the thrust sheets of the MCT zone (Main Central Thrust II sensu Arita, 1983) and in the underlying granite gneisses of the Lesser Himalayan Crystallines (LHC) which crop out in the Ama Drime —Nyonno Ri Range. While Miocene leucogranites in the HHC and in the Tibetan Series are known from end to end of the Himalaya, Miocene leucogranites in the MCT zone and in the Lesser Himalaya have not been frequently described.展开更多
The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was deriv...The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was derived from tholeiitic magma series with higher TiO2, REE abundance and Fe3+/Fe2+ ratio ; norite-gabbro was derived from calc-alkali magma series with lower TiO2, Fe3+/Fe2+ ratio and REE abundance and much lower HREE abundance, which suggests that the source of the norite-gabbro magma was deeper and controlled by eclogite facies. Geochemical characteristics of both plutonic rocks are similar to those of island-arc basalts, such as relatively high contents of Ba, Pb and Sr and relatively low contents of Nb, Zr and N j.The Sr, Nd isotopic characteristics of the Lajimiao norite-gabbro complex are similar to those of ophiolites. Its εNd values are constant, about+2; whereas εst values have wide variation from - 6.4 to +31.2 and positively correlate with Na2O, H2O+ and CO2 contents and the Fe3+/Fe2+ ratio. The εNd- Nd/Th, εNd- La/Nb and εNd-Ba/Nb diagrams clearly show that there were significant components of terrigenous sediments in the mantle source of the Lajimiao norite-gabbro complex. It suggests that large amount of sediments had been carried into the mantle by the subducted ancient Qinling sea plate during the Palaeozoic.展开更多
Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd...Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd-87Sr/86Sr, 87Sr/86Sr-Sr and 87Sr/86Sr-K2O/(K2O+Na2O) indicated that the volcanic rocks were chiefly derived from the depleted mantle source and generally were not mixed crust materials. Of the samples 6 were given the mean Sm -Nd model age (TDM) of 443. 3±20. 6 Ma possibly indicating the age of chemical variation event in the magma source of the study area. Features of the trace elements indicated that the rocks from the Half Three Point Formation are of typical calc-alkaline volcanic suite and similar to those from the Tertiary volcanic rocks of the Fildes Peninsula, being the same products of the island-arc volcanic activity.展开更多
文摘The analysis of available Nd isotope data from the Tanzania Craton places important constraints on the crest-mantle separation ages,and events marking juvenile crustal addition and crustal recycling.Nd model ages date the oldest crust extraction to 3.16 Ga in the Tanzania Craton,although a rock record of such antiquity is yet to be found there.The most significant period of juvenile crustal addition as well as crustal recycling is 2.7-2.6 Ga.The Nd isotopes of marie samples show that chemical heterogeneity existed in the mantle beneath the Tanzania Craton,with some samples originating from significantly depleted mantle, and most samples originating from the mixture of primitive mantle and depleted mantle.The Nd isotope section reveals significant differences in Nd isotopes between the north eraton and central craton;compared to the north craton,the central craton yields a Nd model age that is approximately 100 Ma older, and its εNd(t)values are more negative,indicating that the two parts of the craton have different mantle source regions.Different types of granitoids are distributed in the Tanzania Craton,such as high-K and low-Al granite,ealc-alkaline granite,peraluminous granite and transitional types of tonalite-trondhjemite- granodiorites (TTGs).Most of the granitoids formed later than the marie rocks in syn-collision and postcollision events.
基金This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035, 40511140503, 40472096, 40502009 and 40472118).
文摘The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.
基金supported by the National Key Basic Research Program(2012CB416700,2007CB411408),a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan
文摘Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.
基金supported by the National Natural Science Foundation of China (41602080)Nuclear Energy Development Project from the National Defense Science and Industry Bureau
文摘This paper presents a systematic study of major and trace elements and Sm-Nd isotopes in leucogranites closely related to uranium mineralization in the Gaudeanmus area, Namibia. The results illustrate that the uraniferous leucogranites possess high SiO2 (68.8wt%-76.0wt%, average 73.1wt%) and K (4.05wt%-7.78wt%, average 5.94wt%) contents, and are sub-alkaline and metaluminous to weakly peraluminous, as reflected by A/CNK values of 0.96-1.07 with an average of 1.01. The leucogranites are rich in light rare earth elements (LREE/HREE = 2.53-7.71; (La/Yb)s = 2.14-10.40), have moderate Eu depletion and high Rb/Sr ratios (2.03-5.50 with an average of 4.36); meanwhile, they are enriched in Rb, K, Th, U and Pb, and depleted in Ba, Nb, Ta, and Sr. The tNd(t) values of uraninites range from -14.8 to -16.5, and the two-stage Nd model ages are 2.43-2.56 Ga. Detailed elemental and Sm-Nd isotopic geochemical characteristics suggest that the leucogranites were formed in a post- orogenic extensional environment. The U-rich pre-Damara basement was the main source of uranium during the primary mineralization event, which is disseminated in leucogranites, whereas the uranium mineralization in veins possibly resulted from remobilization of the primary uranium minerals.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金supported by the Chinese Ministry of Science and Technology(Sinoprobe-05-03)Doctoral Fund of Ministry of Education of China(20110022120003)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen Fund of State Key Laboratory of Geological Processes and Mineral Resources(GPMR2011)
文摘Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.
文摘Trace elemental associations and Sr-Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enriches Sr,P,Mn and Ba, enriches Li,U,Th,Sc,Co,Cu,Pb,Zn,Cr,Rb,Y,Sb and light rare earth elements,slightly enriches V,Ga,Zr,Nb,Cd and middle rare earth elements,is short of Mo,In,Sn,Cs,Hf,Ta,W,Ti,Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements.The REE (rare earth elements)partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean.The Sr,Nd isotopic ratios of the Okinawa Trough foraminifera are 0 709 769 and 0 512 162,respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water,but much lower than those of river water;the latter is slightly lower than those of oceanic water,but higher than those of river water,demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.
基金funded by the Open Foundation of the Beijing SHRIMP Center (DDC15-016)the Applied Basic Research Program Youth Project of Yunnan Province (2016DF031)the National Basic Research Program of China (2015CB452605)
文摘The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.
文摘The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fujian Province were emplaced in the Early and Late Cretaceous periods, respectively; the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series. Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O. As for the Bancun dyke, Al2O3=16.32%–17.54% and K2O/Na2O=0.65–0.77; as for the Bali dyke, Al2O3=16.89%–17.81% and K2O/Na2O=0.93–0.99. Both the Bancun and Bali mafic dykes are relatively enriched in LILE and LREE, but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc, with high initial Sr isotopic ratios and low εNd (t) values. The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556–0.70903 and their εNd (t) values vary between -6.8 and -6.3; those of the Bali hornblende dyke are within the range of 0.710726–0.710746 and their εNd (t) values are -4.7– -4.9, showing the characteristics of enriched mantle EM II. The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination, and metasomatism caused by subduction fluids is the main factor leading to LILE and LREE enrichments. The enriched mantle is the source region for the mafic dykes, and mixing of subduction fluid metasomatized enriched mantle and EM II-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes. Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas. In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics, it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc, revealing the tectonic environment of formation of the mafic dykes, the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced. Meanwhile, it is also indicated that the tensional tectonic stress mechanism is responsible for the formation of the mafic dykes in western Fujian Province.
基金financially supported by the National Natural Science Foundation of China(No.41272093)China geological survey project(No.12120114080901)
文摘The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.
基金supported by the resource compensation of Heilongjiang Province(Grant Nos.SDK2010-25)the Special Scientific Research Fund of Public Welfare Profession of China(Grant Nos.201211008)
文摘Whole-rock geochemical, zircon U-Pb geochronological and Sr-Nd-Hf isotopic data are presented for the Early Cretaceous volcanic rocks from the northern Da Hinggan Mountains. The volcanic rocks generally display high SiO2 (73.19-77.68 wt%) and Na20+K20 (6.53-8.98 wt%) contents, with enrichment in Rb, Th, U, Pb and LREE, and depletion in Nb, Ta, P and Ti. Three rhyolite samples, one rhyolite porphyry sample, and one volcanic breccia sample yield weighted mean 206pb/23SU ages of 135.1±1.2 Ma, 116.5±1.1 Ma, 121.9±1.0 Ma, 118.1±0.9 Ma and 116.9±1.4 Ma, respectively. All these rocks have moderate (STSr/S6Sr)i values of 0.704912 to 0.705896, slightly negative eNd(t) values of -1.4 to -0.1, and positive Cur(t) values of 3.7 to 8. Their zircon Hf and whole-rock Nd isotopic model ages range from 594 to 1024 Ma. These results suggest that the Early Cretaceous volcanic rocks were originated from melting of subducted oceanic crust and associated sediments during the closure of the Mongol-Okhotsk Ocean.
文摘Large plutons and dyke networks of Miocene leucogranite, magnificently exposed in Makalu, Nuptse and Cho Oyu, occur in the Cho—Oyu—Everest—Makalu Range at the top of the Higher Himalayan Crystalline (HHC) nappe and along the South Tibetan Detachment (STD). In the Kharta\|Dzakar Chu area, in the western limb of the Arun transverse anticline, discordant leucogranite dykes were found in the Precambrian—Cambrian (?) sediments of the Tibetan Series just above the STD (North Col Formation), throughout the HHC nappe, in the thrust sheets of the MCT zone (Main Central Thrust II sensu Arita, 1983) and in the underlying granite gneisses of the Lesser Himalayan Crystallines (LHC) which crop out in the Ama Drime —Nyonno Ri Range. While Miocene leucogranites in the HHC and in the Tibetan Series are known from end to end of the Himalaya, Miocene leucogranites in the MCT zone and in the Lesser Himalaya have not been frequently described.
基金Aproject supported by the National Natural Science Foundation of China (No.49070165)
文摘The Lajimiao norite-gabbro complex, as a part of the ophiolites on the southern side of the North Qinling belt, consists of gabbro and norite-gabbro. They were derived from different magma series: the gabbro was derived from tholeiitic magma series with higher TiO2, REE abundance and Fe3+/Fe2+ ratio ; norite-gabbro was derived from calc-alkali magma series with lower TiO2, Fe3+/Fe2+ ratio and REE abundance and much lower HREE abundance, which suggests that the source of the norite-gabbro magma was deeper and controlled by eclogite facies. Geochemical characteristics of both plutonic rocks are similar to those of island-arc basalts, such as relatively high contents of Ba, Pb and Sr and relatively low contents of Nb, Zr and N j.The Sr, Nd isotopic characteristics of the Lajimiao norite-gabbro complex are similar to those of ophiolites. Its εNd values are constant, about+2; whereas εst values have wide variation from - 6.4 to +31.2 and positively correlate with Na2O, H2O+ and CO2 contents and the Fe3+/Fe2+ ratio. The εNd- Nd/Th, εNd- La/Nb and εNd-Ba/Nb diagrams clearly show that there were significant components of terrigenous sediments in the mantle source of the Lajimiao norite-gabbro complex. It suggests that large amount of sediments had been carried into the mantle by the subducted ancient Qinling sea plate during the Palaeozoic.
基金The project supported by the State Antarctic Committeethe National Natural Science Foundation of China
文摘Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd-87Sr/86Sr, 87Sr/86Sr-Sr and 87Sr/86Sr-K2O/(K2O+Na2O) indicated that the volcanic rocks were chiefly derived from the depleted mantle source and generally were not mixed crust materials. Of the samples 6 were given the mean Sm -Nd model age (TDM) of 443. 3±20. 6 Ma possibly indicating the age of chemical variation event in the magma source of the study area. Features of the trace elements indicated that the rocks from the Half Three Point Formation are of typical calc-alkaline volcanic suite and similar to those from the Tertiary volcanic rocks of the Fildes Peninsula, being the same products of the island-arc volcanic activity.