Two-dimensional(2D) graphite carbon nitride(g-C_3N_4) nanosheets have been successfully used as a saturable absorber(SA) in a passively Q-switched Nd:LLF laser at 1.3 μm for the first time, to the best of our knowled...Two-dimensional(2D) graphite carbon nitride(g-C_3N_4) nanosheets have been successfully used as a saturable absorber(SA) in a passively Q-switched Nd:LLF laser at 1.3 μm for the first time, to the best of our knowledge.Under an incident pump power of 9.97 W, the shortest pulse duration of 275 ns was acquired with output power of0.96 W and pulse repetition rate of 154 k Hz, resulting in a pulse energy of 6.2 μJ. In addition, the saturable absorption behaviors of zero-dimensional 12 nm g-C_3N_4 nanoparticles(g-C_3N_4-NPs) and three-dimensional ordered mesoporous g-C_3N_4(mpg-C_3N_4) were also observed, although their morphology and structure were quite different from 2D g-C_3N_4. The experimental results introduce the potential application of g-C_3N_4 nanomaterials as SAs in Q-switched lasers.展开更多
基金Natural Science Foundation of Shandong Province(ZR2013FM027)China Postdoctoral Science Foundation(2014M561921,2015T80713)+1 种基金Independent Innovation Foundation of Shandong University(IIFSU)(2082014TB011)National Natural Science Foundation of China(NSFC)for Youths(61308020)
文摘Two-dimensional(2D) graphite carbon nitride(g-C_3N_4) nanosheets have been successfully used as a saturable absorber(SA) in a passively Q-switched Nd:LLF laser at 1.3 μm for the first time, to the best of our knowledge.Under an incident pump power of 9.97 W, the shortest pulse duration of 275 ns was acquired with output power of0.96 W and pulse repetition rate of 154 k Hz, resulting in a pulse energy of 6.2 μJ. In addition, the saturable absorption behaviors of zero-dimensional 12 nm g-C_3N_4 nanoparticles(g-C_3N_4-NPs) and three-dimensional ordered mesoporous g-C_3N_4(mpg-C_3N_4) were also observed, although their morphology and structure were quite different from 2D g-C_3N_4. The experimental results introduce the potential application of g-C_3N_4 nanomaterials as SAs in Q-switched lasers.