Objective:The properties of Nd:GdVO4 laser crystals were studied in application of all-solid laser with LD pumped.Method:We adopted sand wich structural Nd:YVO4 laser crystals experimental devices separately.Results:...Objective:The properties of Nd:GdVO4 laser crystals were studied in application of all-solid laser with LD pumped.Method:We adopted sand wich structural Nd:YVO4 laser crystals experimental devices separately.Results:As to Nd:YVO4 crystal,1.2W continuous laser output at 1064nm was ac-quired with the optical-to-optical transition efficiency of 30%.And as to Nd:GdVO4,1.8W continuous laser out-put at 1064nm was acquired with the optical-to-optical efficiency of 47.2%.Conclusion:All-solid laser is of simple and compact structure,long lifetime,low cost and high efficiency that it will be extensively applied to laser bioengineering,laser environmental monitoring and so on.And comparing the properties of Nd:GdVO4 to that of Nd:YVO4,Nd:GdVO4 would be a more promising all-solid laser crystal.展开更多
A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported.A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-sw...A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported.A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-switch.At the repetition rate of 200kHz,the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65ns are achieved at an incident pump power of 27 W,corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%,respectively.To the best of our knowledge,this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.展开更多
The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) ...The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) are observed at room temperature. The fluorescence lifetime of the 4F3/2 level of Nd^3+ in Nd,Yb:YVO4 is measured under 808 nm laser light excitation. The efficiency of Nd^3+ → Yb^3+ energy transfer in YVO4 is determined to be about 34%.展开更多
The polarized absorption spectra of Tm3+/Er3+:YVO4 crystal were measured at room temperature. Based on the Judd-Ofelt theory, the spectral parameters were obtained: the intensity parameters Wl of Tm3+ in Tm/Er:YVO4 cr...The polarized absorption spectra of Tm3+/Er3+:YVO4 crystal were measured at room temperature. Based on the Judd-Ofelt theory, the spectral parameters were obtained: the intensity parameters Wl of Tm3+ in Tm/Er:YVO4 crystal: W2 = 10.69×10-20, W4 = 0.604×10-20, W6 = 2.05×10-20 cm2 for the (100) face and W2 = 10.43×10-20, W4 = 0.13×10-20, W6 = 1.83×10-20 cm2 for the (001) face. Based on these values, the oscillator strength, radioactive lifetime and fluorescence branch ratio were calculated for Tm3+ in Tm/Er:YVO4 crystal.展开更多
The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in...The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30ns and the peak power of 1.75kW, at the incident pump power of 7.75W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7kHz and 680MHz, respectively.展开更多
This paper reports the growth, X-ray diffraction and spectroscopy of Nd3+:Sr3Gd2(BO3)4 crystal. A Nd3+:Sr3Gd2(BO3)4 crystal with dimensions of φ20 × 45 mm3 has been grown by the Czochralski method. Nd3+...This paper reports the growth, X-ray diffraction and spectroscopy of Nd3+:Sr3Gd2(BO3)4 crystal. A Nd3+:Sr3Gd2(BO3)4 crystal with dimensions of φ20 × 45 mm3 has been grown by the Czochralski method. Nd3+:Sr3Gd2(BO3)4 crystal belongs to the orthorhombic system, space group Pnma (D2h) with a = 0.7401, b = 1.604 and c = 0.8755 nm. The absorption and emission spectra of Nd3+:Sr3Gd2(BO3)4 were investigated. The absorption cross section oa is 3.11 × 10^-20cm2 at 808 nm. The absorption transition at 808 nm has an FWHM of 14 nm. The luminescence lifetime τf is 51.7 μs. The emission cross section oc at 1064 nm wavelength is 1.09 × 10^-19 cm2.展开更多
文摘Objective:The properties of Nd:GdVO4 laser crystals were studied in application of all-solid laser with LD pumped.Method:We adopted sand wich structural Nd:YVO4 laser crystals experimental devices separately.Results:As to Nd:YVO4 crystal,1.2W continuous laser output at 1064nm was ac-quired with the optical-to-optical transition efficiency of 30%.And as to Nd:GdVO4,1.8W continuous laser out-put at 1064nm was acquired with the optical-to-optical efficiency of 47.2%.Conclusion:All-solid laser is of simple and compact structure,long lifetime,low cost and high efficiency that it will be extensively applied to laser bioengineering,laser environmental monitoring and so on.And comparing the properties of Nd:GdVO4 to that of Nd:YVO4,Nd:GdVO4 would be a more promising all-solid laser crystal.
基金Supported by the Science and Technology Department Project of Jilin Province under Grant Nos 2010PT and 20100355.
文摘A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported.A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-switch.At the repetition rate of 200kHz,the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65ns are achieved at an incident pump power of 27 W,corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%,respectively.To the best of our knowledge,this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.
基金Project supported by the National Natured Science Foundation of China (Grant No 60438020).
文摘The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) are observed at room temperature. The fluorescence lifetime of the 4F3/2 level of Nd^3+ in Nd,Yb:YVO4 is measured under 808 nm laser light excitation. The efficiency of Nd^3+ → Yb^3+ energy transfer in YVO4 is determined to be about 34%.
文摘The polarized absorption spectra of Tm3+/Er3+:YVO4 crystal were measured at room temperature. Based on the Judd-Ofelt theory, the spectral parameters were obtained: the intensity parameters Wl of Tm3+ in Tm/Er:YVO4 crystal: W2 = 10.69×10-20, W4 = 0.604×10-20, W6 = 2.05×10-20 cm2 for the (100) face and W2 = 10.43×10-20, W4 = 0.13×10-20, W6 = 1.83×10-20 cm2 for the (001) face. Based on these values, the oscillator strength, radioactive lifetime and fluorescence branch ratio were calculated for Tm3+ in Tm/Er:YVO4 crystal.
文摘The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30ns and the peak power of 1.75kW, at the incident pump power of 7.75W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7kHz and 680MHz, respectively.
文摘This paper reports the growth, X-ray diffraction and spectroscopy of Nd3+:Sr3Gd2(BO3)4 crystal. A Nd3+:Sr3Gd2(BO3)4 crystal with dimensions of φ20 × 45 mm3 has been grown by the Czochralski method. Nd3+:Sr3Gd2(BO3)4 crystal belongs to the orthorhombic system, space group Pnma (D2h) with a = 0.7401, b = 1.604 and c = 0.8755 nm. The absorption and emission spectra of Nd3+:Sr3Gd2(BO3)4 were investigated. The absorption cross section oa is 3.11 × 10^-20cm2 at 808 nm. The absorption transition at 808 nm has an FWHM of 14 nm. The luminescence lifetime τf is 51.7 μs. The emission cross section oc at 1064 nm wavelength is 1.09 × 10^-19 cm2.