BACKGROUND This case of gestational gingival tumor is huge and extremely rare in clinical practice.As the growth location of this gingival tumor is in the upper anterior tooth area,it seriously affects the pregnant wo...BACKGROUND This case of gestational gingival tumor is huge and extremely rare in clinical practice.As the growth location of this gingival tumor is in the upper anterior tooth area,it seriously affects the pregnant woman's speech and food,causing great pain to the patient.The use of Nd:YGA water mist laser to remove the gingival tumor resulted in minimal intraoperative bleeding,minimal adverse reactions,and good postoperative healing,which is worthy of clinical promotion and application.CASE SUMMARY The patient,a pregnant woman,reported a large lump in her mouth on the first day of postpartum treatment.Based on medical history and clinical examination,the diagnosis was diagnosed as gestational gingival tumor.Postoperative pathological biopsy also confirmed this diagnosis.The use of Nd:YAG water mist laser to remove the tumor resulted in minimal intraoperative bleeding,clear surgical field of view,short surgical time,and good postoperative healing.CONCLUSION In comparison to traditional surgery,Nd:YAG water mist laser surgery is minimally invasive,minimizes cell damage,reduces bleeding,ensures a clear field of vision,and virtually eliminates postoperative edema,carbonization,and the risk of cross infection.It has unique advantages in oral soft tissue surgery for pregnant patients.Therefore,the clinical application of Nd:YAG water mist laser for the treatment of gestational gingival tumors is an ideal choice.展开更多
The experiment of Nd: YAG pulsed laser self-fluxing welding for 304 stainless steel/Ti6Al4V titanium alloy dissimilar metal was carried out. The microstructure properties of welded joint were analyzed by SEM, EDS and...The experiment of Nd: YAG pulsed laser self-fluxing welding for 304 stainless steel/Ti6Al4V titanium alloy dissimilar metal was carried out. The microstructure properties of welded joint were analyzed by SEM, EDS and XRD. The equilibrium lattice constants, enthalpies of formation, cohesive energies, mechanical properties, Debye temperatures and valence electron structures of Ti-Fe intermetallic compounds (IMCs) were calculated by the first principle pseudopotential plane wave method based on density functional theory (DFT). According to the thermodynamic data of Ti-Fe-Cr compounds, the Gibbs free energy per mole of compound at different temperatures was calculated and their thermal stability was compared. The results show that there are no macroscopic cracks in the welded joints, and the IMCs distributed evenly along the welding interface exhibits 3 distinct layers of microstructure with different colors. The welds interface generates IMCs of TiFe, TiFe 2 and a small amount of Ti 5Cr 7Fe 17 IMCs. Ti-Fe IMCs with high thermodynamic stability and easy alloying formation. The results of Gibbs free energies show that the sequence of precipitates in the interface is Ti 5Cr 7Fe 17 , TiFe 2 and TiFe in high temperature during the metallurgical reaction. The G/B values of Ti-Fe IMCs are greater than the critical value of 0.5, indicating that it is an intrinsic brittleness.展开更多
By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular wavefo...By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.展开更多
The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active elem...The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of surface tension temperature coefficient in weld pool, thus, the change of fluid flow paten in weld pool due to the flux and sulfur.展开更多
The main aim of this research is to optimize the tensile strength of laser welded FeCo-V alloy.A mathematicalrelationship was developed to predict tensile strength of the laser beam welded FeCo-V foils by incorporatin...The main aim of this research is to optimize the tensile strength of laser welded FeCo-V alloy.A mathematicalrelationship was developed to predict tensile strength of the laser beam welded FeCo-V foils by incorporating process parameterssuch as lamping current,welding speed,pulse duration and focused position.The procedure was established to improve the weldstrength and increase the productivity.The results indicate that the pulse duration and welding speed have the greatest influence ontensile strength.The obtained results showed that the tensile strength of the weld joints increase as a function of increasing pulseduration reaching to a maximum at a pulse duration value of2.25ms.Moreover,the tensile strength of joints increases with decreasein welding speed reaching to a maximum at a welding speed of125mm/min.It has been shown that increase in pulse duration anddecrease in welding speed result in increased effective peak power density and hence formation of more resistant welds.At higherpulse durations and lower welding speeds,the tensile strength of weld joints decreases because of formation of solidificationmicrocracks in the fusion zone.展开更多
A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of...A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.展开更多
Background and Objective: Unwanted hair growth is a discomforting issue affecting both genders. People have tried various methods to get rid of this situation. This study aims to evaluate the efficacy and safety of a ...Background and Objective: Unwanted hair growth is a discomforting issue affecting both genders. People have tried various methods to get rid of this situation. This study aims to evaluate the efficacy and safety of a combined Alexandrite and Nd:YAG laser treatment for permanent hair removal, drawing insights from existing literature. Materials and Methods:This study included a total of 2127 patients (302 males, 1825 females) aged 18 - 65, with complete data, who underwent hair removal treatment between December 2018 and April 2021. These patients were treated using the Duetta laser system (Quanta system, Samarate, Italy), combining Alexandrite 755 nm and Nd:YAG 1064 nm wavelengths. The patients’ skin types were classified according to the Fitzpatrick classification scale. Target area/areas for laser hair removal was/were determined. Laser parameters, pulse counts, pain levels assessed through the Visual Pain Scale (VPS), and patient satisfaction were documented based on skin types. Findings: Across various skin types, Types I - II exhibited the highest treatment success rates (87%), with the axillary region achieving the highest rate (83%) and the face region achieving the lowest rate (75%). Pain scale analysis indicated that 98% of patients tolerated the procedure well. Patient satisfaction levels exceeded 90%. Evaluation of complication rates revealed minimal occurrences. Conclusion: The combined Alexandrite and Nd:YAG laser system demonstrates both efficacy and safety across diverse skin types, attributed to its notable success rates, minimal adverse effects, and high patient tolerance.展开更多
YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fanta...YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.展开更多
Biodegradable magnesium-based alloys are very promising materials for temporary implants. Laser welding is an important joining method in such application. In this study, the as-rolled AZ31B magnesium alloy sheets of ...Biodegradable magnesium-based alloys are very promising materials for temporary implants. Laser welding is an important joining method in such application. In this study, the as-rolled AZ31B magnesium alloy sheets of 1 mm in thickness were successfully joined by Nd : YAG laser welding. The microstructure and properties of the welded joint were investigated. The result shows that the welded joint is characterized by a narrow heat-affected zone, finer grains and a large number of precipitates distribute in the matrix in the weld. Microhardness of the weld is significantly improved to 72 HV 0. 05 as compared to 55 HV 0. 05 of the base metal. Tensile strength of butt-welded joint is 180. 24 MPa, which is 76. 8% that of the base metal. The electrochemical corrosion experiment shows that the corrosion resistance of laser welded joint is significantly improved in a 3.5 wt. % NaCl solution.展开更多
文摘BACKGROUND This case of gestational gingival tumor is huge and extremely rare in clinical practice.As the growth location of this gingival tumor is in the upper anterior tooth area,it seriously affects the pregnant woman's speech and food,causing great pain to the patient.The use of Nd:YGA water mist laser to remove the gingival tumor resulted in minimal intraoperative bleeding,minimal adverse reactions,and good postoperative healing,which is worthy of clinical promotion and application.CASE SUMMARY The patient,a pregnant woman,reported a large lump in her mouth on the first day of postpartum treatment.Based on medical history and clinical examination,the diagnosis was diagnosed as gestational gingival tumor.Postoperative pathological biopsy also confirmed this diagnosis.The use of Nd:YAG water mist laser to remove the tumor resulted in minimal intraoperative bleeding,clear surgical field of view,short surgical time,and good postoperative healing.CONCLUSION In comparison to traditional surgery,Nd:YAG water mist laser surgery is minimally invasive,minimizes cell damage,reduces bleeding,ensures a clear field of vision,and virtually eliminates postoperative edema,carbonization,and the risk of cross infection.It has unique advantages in oral soft tissue surgery for pregnant patients.Therefore,the clinical application of Nd:YAG water mist laser for the treatment of gestational gingival tumors is an ideal choice.
基金supported by the National High Technology Research and Development Program of China(Grant No.2013AA041003)the National Natural Science Foundation of China(Grant No.51365039)
文摘The experiment of Nd: YAG pulsed laser self-fluxing welding for 304 stainless steel/Ti6Al4V titanium alloy dissimilar metal was carried out. The microstructure properties of welded joint were analyzed by SEM, EDS and XRD. The equilibrium lattice constants, enthalpies of formation, cohesive energies, mechanical properties, Debye temperatures and valence electron structures of Ti-Fe intermetallic compounds (IMCs) were calculated by the first principle pseudopotential plane wave method based on density functional theory (DFT). According to the thermodynamic data of Ti-Fe-Cr compounds, the Gibbs free energy per mole of compound at different temperatures was calculated and their thermal stability was compared. The results show that there are no macroscopic cracks in the welded joints, and the IMCs distributed evenly along the welding interface exhibits 3 distinct layers of microstructure with different colors. The welds interface generates IMCs of TiFe, TiFe 2 and a small amount of Ti 5Cr 7Fe 17 IMCs. Ti-Fe IMCs with high thermodynamic stability and easy alloying formation. The results of Gibbs free energies show that the sequence of precipitates in the interface is Ti 5Cr 7Fe 17 , TiFe 2 and TiFe in high temperature during the metallurgical reaction. The G/B values of Ti-Fe IMCs are greater than the critical value of 0.5, indicating that it is an intrinsic brittleness.
基金Sponsored by National Science Fund!( 59881 0 0 2 )
文摘By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.
文摘The influence of flux and sulfur content on YAG laser welding has been investigated, and the influencing factors and mechanism were discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of surface tension temperature coefficient in weld pool, thus, the change of fluid flow paten in weld pool due to the flux and sulfur.
文摘The main aim of this research is to optimize the tensile strength of laser welded FeCo-V alloy.A mathematicalrelationship was developed to predict tensile strength of the laser beam welded FeCo-V foils by incorporating process parameterssuch as lamping current,welding speed,pulse duration and focused position.The procedure was established to improve the weldstrength and increase the productivity.The results indicate that the pulse duration and welding speed have the greatest influence ontensile strength.The obtained results showed that the tensile strength of the weld joints increase as a function of increasing pulseduration reaching to a maximum at a pulse duration value of2.25ms.Moreover,the tensile strength of joints increases with decreasein welding speed reaching to a maximum at a welding speed of125mm/min.It has been shown that increase in pulse duration anddecrease in welding speed result in increased effective peak power density and hence formation of more resistant welds.At higherpulse durations and lower welding speeds,the tensile strength of weld joints decreases because of formation of solidificationmicrocracks in the fusion zone.
文摘A study was performed with the objectives of understanding lap welding phenomena of Zn-coated steels with a Nd:YAG laser as well as obtaining a fundamental knowledge of monitoring signals for the formation judgment of sound or bad weld beads. The behavior of a molten pool and a reflected beam was simultaneously observed through a high-speed video together with the monitoring of reflected beam intensity.The effect of a gap between sheets on porosity formation and bead appearances was confirmed,and characteristic monitoring signals were obtained according to the gaps.In the case of no gap,spatters were frequently generated,and a reflected beam was fluctuated intensively at low frequencies.On the other hand,in welding sheets with a wide gap,lap welds were not produced and the high frequency signals of a reflected beam were detected.Moreover,sound welds were produced in the sheets with a proper gap,and a moderate reflected beam was monitored.From these results,it was found that monitoring of a reflected beam was beneficial to the judgment of sound,under-filled or incomplete lap welds.
文摘Background and Objective: Unwanted hair growth is a discomforting issue affecting both genders. People have tried various methods to get rid of this situation. This study aims to evaluate the efficacy and safety of a combined Alexandrite and Nd:YAG laser treatment for permanent hair removal, drawing insights from existing literature. Materials and Methods:This study included a total of 2127 patients (302 males, 1825 females) aged 18 - 65, with complete data, who underwent hair removal treatment between December 2018 and April 2021. These patients were treated using the Duetta laser system (Quanta system, Samarate, Italy), combining Alexandrite 755 nm and Nd:YAG 1064 nm wavelengths. The patients’ skin types were classified according to the Fitzpatrick classification scale. Target area/areas for laser hair removal was/were determined. Laser parameters, pulse counts, pain levels assessed through the Visual Pain Scale (VPS), and patient satisfaction were documented based on skin types. Findings: Across various skin types, Types I - II exhibited the highest treatment success rates (87%), with the axillary region achieving the highest rate (83%) and the face region achieving the lowest rate (75%). Pain scale analysis indicated that 98% of patients tolerated the procedure well. Patient satisfaction levels exceeded 90%. Evaluation of complication rates revealed minimal occurrences. Conclusion: The combined Alexandrite and Nd:YAG laser system demonstrates both efficacy and safety across diverse skin types, attributed to its notable success rates, minimal adverse effects, and high patient tolerance.
文摘YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.
基金The work was supported by the National Natural Science Foundation of China ( Grant No. 51305292 ) and the Aviation Science Foundation ( Grant No. 20105429001 ).
文摘Biodegradable magnesium-based alloys are very promising materials for temporary implants. Laser welding is an important joining method in such application. In this study, the as-rolled AZ31B magnesium alloy sheets of 1 mm in thickness were successfully joined by Nd : YAG laser welding. The microstructure and properties of the welded joint were investigated. The result shows that the welded joint is characterized by a narrow heat-affected zone, finer grains and a large number of precipitates distribute in the matrix in the weld. Microhardness of the weld is significantly improved to 72 HV 0. 05 as compared to 55 HV 0. 05 of the base metal. Tensile strength of butt-welded joint is 180. 24 MPa, which is 76. 8% that of the base metal. The electrochemical corrosion experiment shows that the corrosion resistance of laser welded joint is significantly improved in a 3.5 wt. % NaCl solution.