This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power...This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.展开更多
Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. Th...Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energyA absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.展开更多
Selected area laser-crystallized polycrystalline silicon (p-Si) thin films were prepared by the third harmonics (355 nm wavelength) generated by a solid-state pulsed Nd:YAG laser. Surface morphologies of 400 nm t...Selected area laser-crystallized polycrystalline silicon (p-Si) thin films were prepared by the third harmonics (355 nm wavelength) generated by a solid-state pulsed Nd:YAG laser. Surface morphologies of 400 nm thick films after laser irradiation were analyzed. Raman spectra show that film crystallinity is improved with in- crease of laser energy. The optimum laser energy density is sensitive to the film thickness. The laser energy density for efficiently crystallizing amorphous silicon films is between 440-634 mJ/cm^2 for 300 nm thick films and between 777-993 mJ/cm^2 for 400 nm thick films. The optimized laser energy density is 634, 975 and 1571 mJ/cm^2 for 300, 400 and 500 nm thick films, respectively.展开更多
基金supported by the Science Foundation of the Ministry of Science and Technology Malaysiathe Islamic Development Bank Jeddahsupport of the Universiti Teknologi Malaysia for this research work
文摘This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.
基金This work was financially supported by the special funds for the major basic research projects(No.G2000067205-4).
文摘Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energyA absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.
基金Project supported by the National Natural Science Foundation of China(Nos.50802118,60906005)the Natural Science Foundation of Guangdong Province,China(No.9451027501002848)
文摘Selected area laser-crystallized polycrystalline silicon (p-Si) thin films were prepared by the third harmonics (355 nm wavelength) generated by a solid-state pulsed Nd:YAG laser. Surface morphologies of 400 nm thick films after laser irradiation were analyzed. Raman spectra show that film crystallinity is improved with in- crease of laser energy. The optimum laser energy density is sensitive to the film thickness. The laser energy density for efficiently crystallizing amorphous silicon films is between 440-634 mJ/cm^2 for 300 nm thick films and between 777-993 mJ/cm^2 for 400 nm thick films. The optimized laser energy density is 634, 975 and 1571 mJ/cm^2 for 300, 400 and 500 nm thick films, respectively.