A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with pho...A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with phosphoric acid etchant. Mechanical proper- ties (such as hardness, yield strength, fracture toughness, and brittle index) of the as-grown crystal were system- atically estimated on the basis of the Vickers hardness test for the first time. The transmission spectrum of Nd: GdNbO4 was measured in the wavelength range of 320- 2400 nm at room temperature, and the absorption peaks were assigned. Results hold great significance for further research on Nd:GdNbO4.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61205173, 51272254, 51502292, and 61405206) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. CXJJ- 15M055).
文摘A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with phosphoric acid etchant. Mechanical proper- ties (such as hardness, yield strength, fracture toughness, and brittle index) of the as-grown crystal were system- atically estimated on the basis of the Vickers hardness test for the first time. The transmission spectrum of Nd: GdNbO4 was measured in the wavelength range of 320- 2400 nm at room temperature, and the absorption peaks were assigned. Results hold great significance for further research on Nd:GdNbO4.