Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
A series of ZnxFe3-xO4(x = 0, 0. 15, 0. 30, 0o 40, 0. 48, 0. 60, 0. 70 ) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magn...A series of ZnxFe3-xO4(x = 0, 0. 15, 0. 30, 0o 40, 0. 48, 0. 60, 0. 70 ) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetzafion at 5 K and 293 K increases initially when x ≤ 0. 40 and subsequently decreases when x 〉 0. 40. At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x = 0. 6, while it begins when x = 0. 80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K)model.展开更多
In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Coo.5Nio.5-xMgxFe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological an...In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Coo.5Nio.5-xMgxFe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of - 32 nm to - 36 nm. The lat- tice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2- substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from - 57.35 emu/g to - 61.49 emu/g and - 603.26 Oe to 684.11 Oe (l Oe = 79.5775 A.m-l), respectively. The higher values of magnetization Ms and Mr suggest that the opti- mum composition is Co0.5Ni0.4Mg0.1Fe204 that can be applied to high-density recording media and microwave devices.展开更多
Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibra...Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibrating sample magnetometer(VSM) at room temperature.The results show that the grain size of nanocrystalline Ni1-xZnxFe2O4 ferrite calcined at 600 ℃ for 1.5 h is about 30 nm.Lattice parameter and specific saturation magnetization Ms of nanocrystalline Ni1-xZnxFe2O4 ferrite increase with the Zn^2+ ions content at room temperature,and maximum Ms is 66.8 A·m^2·kg^-1 as the Zn^2+ ions content is around 0.5,and coercivity Hc of the nanocrystalline Ni1-xZnxFe2O4 ferrite decreases with Zn^2+ ions content.展开更多
A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease...A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.展开更多
High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, res...High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, respectively, and the milled powders were all sintered for 5 min at 900°C. All the samples exhibit a single spinel phase. With increasing of the ball milling time, the relative density of the samples increases (up to 97.7%), however, the grain size decreases (down to ~200 nm). At room temperature, the sample from the 40 h-milled powder has the best combination of saturation magnetization and coercivity (83 emu/g and 15 Oe). These outstanding magnetic properties may be associated with high density and uniform microstructure created by SPS on the basis of fine precursor powders produced by high-energy ball milling.展开更多
With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance elec...With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.展开更多
Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for prec...Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.展开更多
Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size...Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 10e = 79.5775 A.cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84 × 10^4 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly snperparamagnetic behavior is ~ spin due to comparable size of nanospheres with superparamagnetic critical thameter Dcr spm The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.展开更多
In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ...In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.展开更多
Oxalate was generally used as a precipitant for synthesis of MnZn ferrites during the co-precipitation process. However, the MnZn ferrite couldn’t be directly obtained and a calcination process was needed. In this re...Oxalate was generally used as a precipitant for synthesis of MnZn ferrites during the co-precipitation process. However, the MnZn ferrite couldn’t be directly obtained and a calcination process was needed. In this research, we reported a direct preparation of the MnZn ferrite nanoparticles by using co-precipitation method, together with refluxing process. XRD measurements proved that crystallite size of the obtained samples increased with an increase in pH value of the co-precipitation solution, and that the crystallite size of about 25 nm was obtained for the sample at a pH of 13. This sample showed the maximum Ms of 58.6 emu/g, which was about one times larger than that of 12 (pH value). Calcination to the obtained samples result in an enlargement in their crystal size and an improvement in their magnetic properties with an increase in temperatures. The samples calcinated in CO2 + H2 atmosphere presented good stability, and the maximum Ms value of 188.2 emu/g was obtained for the 1100。C-heated sample. Unfortunately, precipitation of some Fe2O3 at 800。C suggested poor stability of the nanocrystalline MnZn ferrite in N2 atmosphere.展开更多
Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subseq...Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subsequent drying-annealing treatment. Water and ethanol/water mixture with volume ratio of 3:1 were used as solvents in the process. Coprecipitated powders were annealed at various temperatures for 1 h. FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), DTA/TGA (differential thermal analy- sis/thermogravimetric analysis) and SEM (scanning electron microscopy) techniques were used to evaluate powder particle characteristics. DTA/TGA results confirmed by those obtained from XRD indicated that the formation of barium ferrite occurs in sample synthesized in ethanol/water solution at a relatively low temper- ature of 631℃. Nano-size particles of barium ferrite with mean particle size of almost 75 and 100 nm were observed in the SEM micrographs of the samples synthesized in ethanol/water solution after annealing at 700 and 800℃ for 1 h, respectively.展开更多
The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterize...The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The testing results showed that the composite exhibited the ferromagnetic and electric behaviors, which benefit for the application of electromagnetic interfence.展开更多
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金The National Natural Science Foundation of China(No.50871029)Open Foundation of National Laboratory of Solid State Microstructure of Nanjing University+2 种基金Open Foundation of Key Laboratory of the Thin Film Material of Jiangsu Provincethe Science Research Foundation of Graduate School of Southeast Universitythe Jiangsu Provincial Innovation Project
文摘A series of ZnxFe3-xO4(x = 0, 0. 15, 0. 30, 0o 40, 0. 48, 0. 60, 0. 70 ) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetzafion at 5 K and 293 K increases initially when x ≤ 0. 40 and subsequently decreases when x 〉 0. 40. At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x = 0. 6, while it begins when x = 0. 80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K)model.
基金supported by the Ibnu Sina Institute for Scientific and Industrial Research,Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia(Grant Nos.Q.J130000.2526.04H65)
文摘In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Coo.5Nio.5-xMgxFe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of - 32 nm to - 36 nm. The lat- tice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2- substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from - 57.35 emu/g to - 61.49 emu/g and - 603.26 Oe to 684.11 Oe (l Oe = 79.5775 A.m-l), respectively. The higher values of magnetization Ms and Mr suggest that the opti- mum composition is Co0.5Ni0.4Mg0.1Fe204 that can be applied to high-density recording media and microwave devices.
基金Funded by the Natural Science Foundation of High Education School ofAnhui Province,China (Nos:KJ2007B0271 and KJ2010A095)
文摘Nanocrystalline Ni1-xZnxFe2O4 ferrites with 0≤x≤1 were successfully prepared by a spraying-coprecipitation method.The microstructure was investigated by using XRD and TEM.Magnetic properties were measured with vibrating sample magnetometer(VSM) at room temperature.The results show that the grain size of nanocrystalline Ni1-xZnxFe2O4 ferrite calcined at 600 ℃ for 1.5 h is about 30 nm.Lattice parameter and specific saturation magnetization Ms of nanocrystalline Ni1-xZnxFe2O4 ferrite increase with the Zn^2+ ions content at room temperature,and maximum Ms is 66.8 A·m^2·kg^-1 as the Zn^2+ ions content is around 0.5,and coercivity Hc of the nanocrystalline Ni1-xZnxFe2O4 ferrite decreases with Zn^2+ ions content.
基金Funded by National Natural Science Foundation of China (Nos.20801016, 20701013, and 60971020)Postdoctoral Foundation of Heilongjiang Province(No. LRB07-231)Fundamental Research Funds for the Central Universities(No.HEUCF201210010)
文摘A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.
文摘High-density fine-grained Ni0.5Zn0.5Fe2O4 ferrite ceramics were synthesized by spark plasma sintering (SPS) in conjunction with high energy ball milling. The precursor powders were milled for 20 h, 40 h, and 60 h, respectively, and the milled powders were all sintered for 5 min at 900°C. All the samples exhibit a single spinel phase. With increasing of the ball milling time, the relative density of the samples increases (up to 97.7%), however, the grain size decreases (down to ~200 nm). At room temperature, the sample from the 40 h-milled powder has the best combination of saturation magnetization and coercivity (83 emu/g and 15 Oe). These outstanding magnetic properties may be associated with high density and uniform microstructure created by SPS on the basis of fine precursor powders produced by high-energy ball milling.
基金supported by the National Natural Science Foundation of China(No.52377026)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Natural Science Foundation of Shandong Province,China(No.ZR2024ME046).
文摘With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.
基金Project(2012BAB10B04) supported by National Key Technology R&D Program of ChinaProject supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50472092,50672008,and 50971023)the Beijing Natural Science Foundation (Preparation and Magnetic Properties of Ferromagnetic Nanoring Lattice)Research Foundation for Talented Scholars of China Three Gorges University.M.Y.Rafique was also supported by the Chancellor Scholarship of the University of Science and Technology of Beijing
文摘Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 10e = 79.5775 A.cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84 × 10^4 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly snperparamagnetic behavior is ~ spin due to comparable size of nanospheres with superparamagnetic critical thameter Dcr spm The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.
基金Project supported by the Foundation of the Ministry of Science and Technology of China (Grant No. 2009GJE00033)the National Natural Youth Fund of China (Grant No. 61001025)the National Program for Science and Technology Development of Guangdong Province,China (Grant No. 2010B090400314)
文摘In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.
文摘Oxalate was generally used as a precipitant for synthesis of MnZn ferrites during the co-precipitation process. However, the MnZn ferrite couldn’t be directly obtained and a calcination process was needed. In this research, we reported a direct preparation of the MnZn ferrite nanoparticles by using co-precipitation method, together with refluxing process. XRD measurements proved that crystallite size of the obtained samples increased with an increase in pH value of the co-precipitation solution, and that the crystallite size of about 25 nm was obtained for the sample at a pH of 13. This sample showed the maximum Ms of 58.6 emu/g, which was about one times larger than that of 12 (pH value). Calcination to the obtained samples result in an enlargement in their crystal size and an improvement in their magnetic properties with an increase in temperatures. The samples calcinated in CO2 + H2 atmosphere presented good stability, and the maximum Ms value of 188.2 emu/g was obtained for the 1100。C-heated sample. Unfortunately, precipitation of some Fe2O3 at 800。C suggested poor stability of the nanocrystalline MnZn ferrite in N2 atmosphere.
基金support by the Iranian Nanotechnology Initiative
文摘Nanocrystalline particles of barium ferrite magnetic material have been prepared by co-precipitation route using aqueous and non-aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 and subsequent drying-annealing treatment. Water and ethanol/water mixture with volume ratio of 3:1 were used as solvents in the process. Coprecipitated powders were annealed at various temperatures for 1 h. FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), DTA/TGA (differential thermal analy- sis/thermogravimetric analysis) and SEM (scanning electron microscopy) techniques were used to evaluate powder particle characteristics. DTA/TGA results confirmed by those obtained from XRD indicated that the formation of barium ferrite occurs in sample synthesized in ethanol/water solution at a relatively low temper- ature of 631℃. Nano-size particles of barium ferrite with mean particle size of almost 75 and 100 nm were observed in the SEM micrographs of the samples synthesized in ethanol/water solution after annealing at 700 and 800℃ for 1 h, respectively.
基金This work was supported by the National Nature Science Foundation of China under Grant No.60425102.
文摘The polyaniline-barium ferrite composite was synthesized by in situ polymerization of aniline in the presence of BaFe12019 nanoparticles. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The testing results showed that the composite exhibited the ferromagnetic and electric behaviors, which benefit for the application of electromagnetic interfence.