A review on fault-tolerant control(FTC) for near space vehicle(NSV) is presented.First,the concept of near space is introduced,the background of NSV is emphasized,and the model characteristics of NSV in faulty cas...A review on fault-tolerant control(FTC) for near space vehicle(NSV) is presented.First,the concept of near space is introduced,the background of NSV is emphasized,and the model characteristics of NSV in faulty case are investigated.Then,a comparison of different existing approaches is briefly carried out,and achievements on the current research in this field are also presented in the view of the practical application.Furthermore,several existing advanced FTC results for nonlinear flight control systems are given.Finally,the recent literature of NSV are presented to provide an overall view of future developments in this area.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin...A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.展开更多
A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into accou...A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.展开更多
A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the t...A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,auton...Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,autonomous vehicles(AVs)are expected to have exceptional perception systems to capture instantaneously their driving environments for predicting lane changes.By exploring the Waymo open motion dataset,this study proposes a framework to explore autonomous driving data and investigate lane change behaviors.In the framework,this study develops a Long Short-Term Memory(LSTM)model to predict lane changing behaviors.The concept of Vehicle Operating Space(VOS)is introduced to quantify a vehicle's instantaneous driving environment as an important indicator used to predict vehicle lane changes.To examine the robustness of the model,a series of sensitivity analysis are conducted by varying the feature selection,prediction horizon,and training data balancing ratios.The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher accuracy and recall for predicting lane-change behaviors.This study offers an example along with a methodological framework for transportation researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments.展开更多
In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equation...In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equations. By means of the method of tri-parametric equation fitting, we confirm the three-dimensional trajectory function of target flying object to geocentric coordinate in double satellites observation conditions, and analyze theoretical errors.展开更多
The research status on the development of RBCC engines and corresponding aerospace vehicles around the world was overviewed,and the technical and application characteristics of RBCC technology were summarized.New deve...The research status on the development of RBCC engines and corresponding aerospace vehicles around the world was overviewed,and the technical and application characteristics of RBCC technology were summarized.New development trends of combined cycle engines as well as space transportation were analyzed,and lastly,some suggestions on the development of RBCC and the relative aerospace vehicles were proposed.展开更多
Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The st...Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The stability analysis methods, such as phase plane analysis, equilibriums analysis and bifurcation analysis, are all used to draw many classical conclusions. It is concluded from these researches that unbounded growth of the vehicle motion during unstable operation is untrue in reality thus one limitation of the 2DOF model. The fundamental assumption of the 2DOF model is that the longitudinal velocity is treated as a constant, but this is intrinsically incorrect. When tyres work in extremely nonlinear region, the coupling between the vehicle longitudinal and lateral motion becomes significant. For the purpose of solving the above problem, the effect of vehicle longitudinal velocity on the stability of the vehicle planar motion when tyres work in extremely nonlinear region is investigated. To this end, a 3DOF model which introducing the vehicular longitudinal dynamics is proposed and the 3D phase space portrait method is employed for visualization of vehicle dynamics. Through the comparisons of the 2DOF and 3DOF models, it is discovered that the vehicle longitudinal velocity greatly affects the vehicle planar motion, and the vehicle dynamics represented in phase space portrait are fundamentally different from that of the 2DOF model. The vehicle planar motion with different front wheel steering angles is further represented by the corresponding vehicle route, yaw rate and yaw angle. These research results enhance the understanding of the stability of the vehicle system particularly during nonlinear region, and provide the insight into analyzing the attractive region and designing the vehicle stability controller, which will be the topics of future works.展开更多
For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The resear...For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.展开更多
This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and di...This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and disruptive technologies, utilizing the concept of low cost manufacturing and operating modes as well. This paper also analyzes the launch strategies for small satellites such as piggyback, networking launch, and single launch with a small launch vehicle(SLV). Finally, the development trend of reusable launch vehicles is discussed as well as the development prospects for China's reusable launch vehicle.展开更多
With the development of smart grid, residents have the opportunity to schedule their household appliances (HA) for the purpose of reducing electricity expenses and alleviating the pressure of the smart grid. In this...With the development of smart grid, residents have the opportunity to schedule their household appliances (HA) for the purpose of reducing electricity expenses and alleviating the pressure of the smart grid. In this paper, we introduce the structure of home energy management system (EMS) and then propose a power optimization strategy based on household load model and electric vehicle (EV) model for home power usage. In this strategy, the electric vehicles are charged when the price is low, and otherwise, are discharged. By adopting this combined system model under the time-of-use electricity price (TOUP), the proposed scheduling strategy would effectively minimize the electricity cost and reduce the pressure of the smart grid at the same time. Finally, simulation experiments are carried out to show the feasibility of the proposed strategy. The results show that crossover genetic particle swarm optimization algorithm has better convergence properties than traditional particle swarm algorithm and better adaptability than genetic algorithm.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic fie...The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.展开更多
Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (D...Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S Internatio...The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.展开更多
Specific challenges arise in the task of real-time automatic data reduction of optical space debris observations. Here we present an automatic technique that optimally detects and measures the sources from images of o...Specific challenges arise in the task of real-time automatic data reduction of optical space debris observations. Here we present an automatic technique that optimally detects and measures the sources from images of optical space debris ob- servations. We show that highly reliable and accurate results can be obtained on most images produced by our specific sensors, and due to optimizations, the whole pipeline works fast and efficiently. Tests demonstrate that the technique performs better than SExtractor from the point of view of fast and accurate detection, therefore it is well suited for data reduction of optical space debris observations.展开更多
基金supported by the National Natural Science Foundation of China (90816023)
文摘A review on fault-tolerant control(FTC) for near space vehicle(NSV) is presented.First,the concept of near space is introduced,the background of NSV is emphasized,and the model characteristics of NSV in faulty case are investigated.Then,a comparison of different existing approaches is briefly carried out,and achievements on the current research in this field are also presented in the view of the practical application.Furthermore,several existing advanced FTC results for nonlinear flight control systems are given.Finally,the recent literature of NSV are presented to provide an overall view of future developments in this area.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金supported by the National Natural Science Foundation of China(6140321061601228+3 种基金61603191)the Natural Science Foundation of Jiangsu(BK20161021)the Nanjing University of Posts and Telecommunications Science Foundation(NY214173)the Open Program of Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing(3DL201607)
文摘A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.
基金supported by the National Natural Science Foundation of China(61374012)the Aeronautical Science Foundation of China(2016ZA51011)
文摘A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(61773398 61703421)
文摘A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
文摘Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,autonomous vehicles(AVs)are expected to have exceptional perception systems to capture instantaneously their driving environments for predicting lane changes.By exploring the Waymo open motion dataset,this study proposes a framework to explore autonomous driving data and investigate lane change behaviors.In the framework,this study develops a Long Short-Term Memory(LSTM)model to predict lane changing behaviors.The concept of Vehicle Operating Space(VOS)is introduced to quantify a vehicle's instantaneous driving environment as an important indicator used to predict vehicle lane changes.To examine the robustness of the model,a series of sensitivity analysis are conducted by varying the feature selection,prediction horizon,and training data balancing ratios.The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher accuracy and recall for predicting lane-change behaviors.This study offers an example along with a methodological framework for transportation researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments.
文摘In this paper we solve the three-dimensional coordinate that the satellite is relative to the geocentric coordinate under certain conditions, making use of the satellite orbit standard trajectory differential equations. By means of the method of tri-parametric equation fitting, we confirm the three-dimensional trajectory function of target flying object to geocentric coordinate in double satellites observation conditions, and analyze theoretical errors.
文摘The research status on the development of RBCC engines and corresponding aerospace vehicles around the world was overviewed,and the technical and application characteristics of RBCC technology were summarized.New development trends of combined cycle engines as well as space transportation were analyzed,and lastly,some suggestions on the development of RBCC and the relative aerospace vehicles were proposed.
基金supported by National Natural Science Foundation of China (Grant No.50775094)
文摘Many researches on vehicle planar motion stability focus on two degrees of freedom(2DOF) vehicle model, and only the lateral velocity (or side slip angle) and yaw rate are considered as the state variables. The stability analysis methods, such as phase plane analysis, equilibriums analysis and bifurcation analysis, are all used to draw many classical conclusions. It is concluded from these researches that unbounded growth of the vehicle motion during unstable operation is untrue in reality thus one limitation of the 2DOF model. The fundamental assumption of the 2DOF model is that the longitudinal velocity is treated as a constant, but this is intrinsically incorrect. When tyres work in extremely nonlinear region, the coupling between the vehicle longitudinal and lateral motion becomes significant. For the purpose of solving the above problem, the effect of vehicle longitudinal velocity on the stability of the vehicle planar motion when tyres work in extremely nonlinear region is investigated. To this end, a 3DOF model which introducing the vehicular longitudinal dynamics is proposed and the 3D phase space portrait method is employed for visualization of vehicle dynamics. Through the comparisons of the 2DOF and 3DOF models, it is discovered that the vehicle longitudinal velocity greatly affects the vehicle planar motion, and the vehicle dynamics represented in phase space portrait are fundamentally different from that of the 2DOF model. The vehicle planar motion with different front wheel steering angles is further represented by the corresponding vehicle route, yaw rate and yaw angle. These research results enhance the understanding of the stability of the vehicle system particularly during nonlinear region, and provide the insight into analyzing the attractive region and designing the vehicle stability controller, which will be the topics of future works.
基金supported by Doctoral Foundation of Ministry of Education of China (Grant No.20070006011)
文摘For the constant distance spacing policy,the existing researches of the string stability focus on the single-predecessor information framework(SPIF) and predecessor-successor information framework(PSIF).The research results demonstrated that the string stability could not be guaranteed with the SPIF,and then the PSIF was proposed to resolve this string instability.But the issue,whether the string stability can be guaranteed when applying the PSIF,is still controversial.Meanwhile,most of the previous researches on the string stability were conducted without consideration of the parasitic time delays and lags.In this paper,the practical longitudinal vehicle dynamics model is built with consideration of the parasitic time delays and lags existing in the actuators,sensors or the communication systems.Secondly,the detailed theoretical analysis of string stability in frequency domain is conducted to demonstrate that the classical linear control laws can not ensure the string stability when applying both the symmetrical PSIF(SPSIF) and asymmetrical PSIF(APSIF).Thirdly,a control law,which adds the position and velocity information of the leading vehicle,is proposed to guarantee string stability for small/medium platoon,and the other control law,which adds the acceleration information of the controlled vehicle,is proposed to guarantee string stability for large platoon as well as small/medium platoon.Finally,the comparative simulation is conducted to confirm the conducted analysis and the proposed control laws.The conducted research completes the means to analyze the string stability in frequency domain,provides the parameters' reference for the design and implementation of the practical automatic following controllers,and improves the reliability and stability of the platoon of automatic vehicles.
文摘This paper analyzes the launch price of the launch vehicles, domestic and abroad, studies the status and trend of the low cost launch vehicles, and introduces two measures to reduce the cost by means of evolved and disruptive technologies, utilizing the concept of low cost manufacturing and operating modes as well. This paper also analyzes the launch strategies for small satellites such as piggyback, networking launch, and single launch with a small launch vehicle(SLV). Finally, the development trend of reusable launch vehicles is discussed as well as the development prospects for China's reusable launch vehicle.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB215202the National Natural Science Foundation of China under Grant No.51205046 and No.61450010
文摘With the development of smart grid, residents have the opportunity to schedule their household appliances (HA) for the purpose of reducing electricity expenses and alleviating the pressure of the smart grid. In this paper, we introduce the structure of home energy management system (EMS) and then propose a power optimization strategy based on household load model and electric vehicle (EV) model for home power usage. In this strategy, the electric vehicles are charged when the price is low, and otherwise, are discharged. By adopting this combined system model under the time-of-use electricity price (TOUP), the proposed scheduling strategy would effectively minimize the electricity cost and reduce the pressure of the smart grid at the same time. Finally, simulation experiments are carried out to show the feasibility of the proposed strategy. The results show that crossover genetic particle swarm optimization algorithm has better convergence properties than traditional particle swarm algorithm and better adaptability than genetic algorithm.
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15320100, XDA15320102, XDA15320103, XDA15320104, XDA15320300 and XDA15052200)supported by the National Natural Science Foundation of China (Grant Nos. 11427803, U1731241, U1631242 and 11820101002)
文摘The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.
基金Supported by the National Natural Science Foundation of China
文摘Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.
文摘The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.
基金funded by the National Natural Science Foundation of China(Grant Nos.11125315 and 11033009)
文摘Specific challenges arise in the task of real-time automatic data reduction of optical space debris observations. Here we present an automatic technique that optimally detects and measures the sources from images of optical space debris ob- servations. We show that highly reliable and accurate results can be obtained on most images produced by our specific sensors, and due to optimizations, the whole pipeline works fast and efficiently. Tests demonstrate that the technique performs better than SExtractor from the point of view of fast and accurate detection, therefore it is well suited for data reduction of optical space debris observations.