期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Solubility of Piperine in Supercritical and Near Critical Carbon Dioxide 被引量:6
1
作者 A.C. Kumoro Harcharan Singh Masitah Hasan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期1014-1020,共7页
Piperine is a member of the lipids family commonly found in peppercorn, ginger and other natural sources and is grouped as an alkaloid. The solubility of piperine has been determined in carbon dioxide at near critical... Piperine is a member of the lipids family commonly found in peppercorn, ginger and other natural sources and is grouped as an alkaloid. The solubility of piperine has been determined in carbon dioxide at near critical and supercritical conditions in a dynamic extraction apparatus. The conditions studied were at pressures ranging from 10 to 20 MPa and temperatures at 293, 300, 313, 323 and 333 K. The results showed that piperine solubility increased with increasing pressure at all temperatures studied. The solubility of plperme in near critical conditions was slightly higher than that at supercritical conditions only at the low-pressure range. Two semi-empirical density dependent correlations, namely the Chrastil model and the Dilute Solution model, were also used to estimate the solubility data. Although both models showed good correlation with the solubility data, the Dilute Solution model performed better prediction than the Chrastil model. 展开更多
关键词 SOLUBILITY PIPERINE SUPERcritical near critical carbon dioxide
下载PDF
Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target 被引量:1
2
作者 洪学仁 周伟军 +5 位作者 谢柏松 杨阳 王莉 田建民 唐荣安 段文山 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期234-243,共10页
In order to generate high quality ion beams through the stable radiation pressure acceleration(RPA) of the near critical density(NCD) target, we propose a new type of target where an ultra-thin high density(HD) ... In order to generate high quality ion beams through the stable radiation pressure acceleration(RPA) of the near critical density(NCD) target, we propose a new type of target where an ultra-thin high density(HD) layer is attached to the front surface of an NCD target, which has a preferable self-supporting property in the RPA experiments than the ultra-thin foil target. It is found that in one-dimensional particle-in-cell(PIC) simulation, by the block of the HD layer in the new target,there emerges the hole-boring process rather than propagation in the NCD layer when the intense laser pulse impinges on this target. As a result, a typical RPA structure that the compressed electron layer overlaps the ion layer as a whole is formed and a high quality ion beam is obtained, e.g., a circularly polarized laser pulse with normalized amplitude a0= 120 impinges on this new target and a 1.2 GeV monoenergetic ion beam is generated through the RPA of the NCD layer. Similar results are also found in the two-dimensional PIC simulation. 展开更多
关键词 laser plasma interaction radiation pressure acceleration near critical density target
下载PDF
Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas 被引量:4
3
作者 T.Toncian C.Wang +17 位作者 E.McCary A.Meadows A.V.Arefiev J.Blakeney K.Serratto D.Kuk C.Chester R.Roycroft L.Gao H.Fu X.Q.Yan J.Schreiber I.Pomerantz A.Bernstein H.Quevedo G.Dyer T.Ditmire B.M.Hegelich 《Matter and Radiation at Extremes》 SCIE EI CAS 2016年第1期82-87,共6页
The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and... The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse.The targets decompress to near and lower than critical densities with plasmas extending over few micrometers,i.e.multiple wavelengths.The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam.Experiments at the Glass Hybrid OPCPA Scaled Test-bed(GHOST)laser system at University of Texas,Austin using such targets measured non-Maxwellian,peaked electron distribution with large bunch charge and high electron density in the laser propagation direction.These results are reproduced in 2D PIC simulations using the EPOCH code,identifying direct laser acceleration(DLA)[1]as the responsible mechanism.This is the first time that DLA has been observed to produce peaked spectra as opposed to broad,Maxwellian spectra observed in earlier experiments[2].This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications. 展开更多
关键词 Direct laser acceleration Electron acceleration near critical plasmas PIC simulations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部