In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique a...In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess ge...Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess germplasm variability from whole seed of 699 samples,field-collected and assembled in four genetic and environmentbased sets:one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population,evaluated in three environments in a large spatial scale of two countries,Mbalmayo and Bafia in Cameroon and Nioro in Senegal,under rainfed conditions.NIR elemental spectra were gathered on six subsets of seeds of each sample,after three rotation scans,with a spectral resolution of 16 cm-1over the spectral range of867 nm to 2530 nm.Spectra were then processed by principal component analysis(PCA)coupled with Partial least squares-discriminant analysis(PLS-DA).As results,a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments.The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 nm,usually related to oil content and fatty acid composition.PCA yielded the most chemical attributes in three significant PCs(i.e.,eigenvalues>10),which together captured 93%of the total variation,revealing genetic and environment structure of varieties and genotypes into four clusters,corresponding to the four samples sets.The pattern of genetic variability of the interspecific population covers,remarkably half of spectrum of the core-collection,turning out to be the largest.Interestingly,a PLS-DA model was developed and a strong accuracy of 99.6%was achieved for the four sets,aiming to classify each seed sample according to environment origin.The confusion matrix achieved for the two sets of Bafia and Nioro showed 100%of instances classified correctly with 100%at both sensitivity and specificity,confirming that their seed quality was different from each other and all other samples.Overall,NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection,as a source of nutritional diversity,to support the breeding efforts.展开更多
Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models...Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.展开更多
The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By...The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device uti...The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.展开更多
BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and prov...BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
[Objective] To explore a method for the rapid determination of protein con- tent in grains of Panicum miliaceum L. [Method] The near infrared transmittance spec- troscopy (NITS) was used to build the mathematical mo...[Objective] To explore a method for the rapid determination of protein con- tent in grains of Panicum miliaceum L. [Method] The near infrared transmittance spec- troscopy (NITS) was used to build the mathematical models for the quantitative analy- sis of protein content in the grains. Four combinations of treatment that first derivative and second derivative were respectively combined with partial least squares (PLS) and modified partial least squares (MPLS) were set to compare their effects on the original transmission spectrum. [Result] The predicting effects of the 4 combinations were similar. The optimal combination was first derivative with MPLS, in which the average determination coefficient of validation (RSQ) was 0.880 6, correlation coeffi- cient of cross validation (1-VR) was 0.857 0, standard error of calibration (SEC) was 0.342 4, standard error of cross validation (SECV) was 0.375 1, and the standard er- ror of prediction (SEP) was 0.454. [Conclusion] The constructed NITS model is a rapid way for the determination of protein content in grains of P. miliaceum.展开更多
[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According...[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.展开更多
Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been ...Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.展开更多
Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made u...Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.展开更多
To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders ...To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.展开更多
[Objective] To explore a rapid determination method for fiber content in grains of quinoa. [Method] Near infrared spectra of 100 quinoa samples were collected. The predicted models for quantitative analysis of fiber c...[Objective] To explore a rapid determination method for fiber content in grains of quinoa. [Method] Near infrared spectra of 100 quinoa samples were collected. The predicted models for quantitative analysis of fiber contents in the grains were built using near infrared transmittance spectroscopy (NITS). [Result] In the wavelength range of 10 000-4 000 cm-1, the near infrared quantitative model of quinoa crude fiber was set up via first derivative + vector normalization preprocessing and combining with the data from chemical methods. The calibration and prediction effect were best, and then the cross validation determination coefficient (FFcv) and external validation determination coefficient (FFval) of fiber by near in- frared quantitative model were 0.884 8 and 0.876 1, respectively. [Conclusion] the model of NITS about complete grains quinoa fiber can be available for fast detecting quinoa fiber content.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focuse...To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.展开更多
[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were cho...[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.展开更多
文摘In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by the GENES intra-Africa Academic Mobility scheme of the European Union(EU-GENES:EACEA/2917/2552)the DESIRA-ABEE project funded by European Union。
文摘Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for seed nutritional breeding.In this study,Near Infrared Spectroscopy(NIRS)was applied to rapidly assess germplasm variability from whole seed of 699 samples,field-collected and assembled in four genetic and environmentbased sets:one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific population,evaluated in three environments in a large spatial scale of two countries,Mbalmayo and Bafia in Cameroon and Nioro in Senegal,under rainfed conditions.NIR elemental spectra were gathered on six subsets of seeds of each sample,after three rotation scans,with a spectral resolution of 16 cm-1over the spectral range of867 nm to 2530 nm.Spectra were then processed by principal component analysis(PCA)coupled with Partial least squares-discriminant analysis(PLS-DA).As results,a huge variability was found between varieties and genotypes for all NIR wavelength within and between environments.The magnitude of genetic variation was particularly observed at 11 relevant wavelengths such as 1723 nm,usually related to oil content and fatty acid composition.PCA yielded the most chemical attributes in three significant PCs(i.e.,eigenvalues>10),which together captured 93%of the total variation,revealing genetic and environment structure of varieties and genotypes into four clusters,corresponding to the four samples sets.The pattern of genetic variability of the interspecific population covers,remarkably half of spectrum of the core-collection,turning out to be the largest.Interestingly,a PLS-DA model was developed and a strong accuracy of 99.6%was achieved for the four sets,aiming to classify each seed sample according to environment origin.The confusion matrix achieved for the two sets of Bafia and Nioro showed 100%of instances classified correctly with 100%at both sensitivity and specificity,confirming that their seed quality was different from each other and all other samples.Overall,NIRS chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the interspecific population and core-collection,as a source of nutritional diversity,to support the breeding efforts.
文摘Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.
基金This work was supported by the National Natural Science Foundation of China(Nos.12204499 and 62075225)Joint Key Projects of National Natural Science Foundation of China(No.U2032206)+1 种基金CAS Project for Young Scientists in Basic Research(No.YSBR-042)Open Project of State Key Laboratory of Surface Physics at Fudan University(No.KF2022_05).
文摘The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金National Natural Science Foundation of China(No.51977214)Science and Technology Research Project of Chongqing Education Commission(No.KJQN202212805)Special funding project of Army Medical University(No.2021XJS08)。
文摘The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.
基金Supported by The Southwest Medical University Student Innovation and Entrepreneurship Project Fund,No.202310632045 and No.202310632059。
文摘BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
基金Supported by the National Key Technology R&D Program of China (2006BAD02B07)the National Mordern Agricultural Industry System of China(CARS-07-12.5-A12)~~
文摘[Objective] To explore a method for the rapid determination of protein con- tent in grains of Panicum miliaceum L. [Method] The near infrared transmittance spec- troscopy (NITS) was used to build the mathematical models for the quantitative analy- sis of protein content in the grains. Four combinations of treatment that first derivative and second derivative were respectively combined with partial least squares (PLS) and modified partial least squares (MPLS) were set to compare their effects on the original transmission spectrum. [Result] The predicting effects of the 4 combinations were similar. The optimal combination was first derivative with MPLS, in which the average determination coefficient of validation (RSQ) was 0.880 6, correlation coeffi- cient of cross validation (1-VR) was 0.857 0, standard error of calibration (SEC) was 0.342 4, standard error of cross validation (SECV) was 0.375 1, and the standard er- ror of prediction (SEP) was 0.454. [Conclusion] The constructed NITS model is a rapid way for the determination of protein content in grains of P. miliaceum.
基金Supported by Promoting Projects of the Industrialization of University Research of Jiangsu Province (JHZD09-35)Natural Science Research Project of Universities in Jiangsu Province (09KJD210001)Research Foundation of Huaiyin Institute of Technology(HGA0908)~~
文摘[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.
文摘Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.
基金National Key Technologies R&D Program Foundation of China (Grant No. 2006BAK04A11)
文摘To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.
基金Supported by the Collection and Arrangement of Crop Germplasm Resources in Shanxi Province(2016zzcx-17)the Special Fund for the Protection and Utilization of Crop Germplasm Resources of the Ministry of Agriculture(2015NWB030-07)+1 种基金the Project of the National Science and Technology Infrastructure of the Ministry of Science and Technology and the Ministry of Finance(NICGR2015-026)the Special Fund for Seed Industry of Shanxi Province(2016zyzx41)~~
文摘[Objective] To explore a rapid determination method for fiber content in grains of quinoa. [Method] Near infrared spectra of 100 quinoa samples were collected. The predicted models for quantitative analysis of fiber contents in the grains were built using near infrared transmittance spectroscopy (NITS). [Result] In the wavelength range of 10 000-4 000 cm-1, the near infrared quantitative model of quinoa crude fiber was set up via first derivative + vector normalization preprocessing and combining with the data from chemical methods. The calibration and prediction effect were best, and then the cross validation determination coefficient (FFcv) and external validation determination coefficient (FFval) of fiber by near in- frared quantitative model were 0.884 8 and 0.876 1, respectively. [Conclusion] the model of NITS about complete grains quinoa fiber can be available for fast detecting quinoa fiber content.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.
基金supported by the State Administration of Forestry and Grass of the 948 Project of China(Grant No.2015-4-52)the support of the Fundamental Research Funds for the Central Universities(Grant No.2572017DB05)the support of the Natural Science Foundation of Heilongjiang Province(Grant No.C2017005)
文摘To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.
基金Supported by National Wheat Industry System(CARS-E-2-36)Henan Wheat Industry System(S2010-10-02)National Science and Technology Support Plan(2011BAD35B-03)~~
文摘[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.