The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.Thi...The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.展开更多
In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi...In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the...The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the earth. The orbital evolution of this kind of asteroid is studied by analyzing and comparing them; reasonable dynamical models and corresponding algorithm are given, and the formal numbered NEAs are calculated. The results of the minimal distance and the very closeapproach time with the earth agree well with those announced by the Minor Planet Center (MPC).展开更多
The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with...The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with respect to the necessary propellant to be used,that the spacecraft could potentially reach.In this paper we investigate the sensitivity of the produced asteroids rank to the employed trajectory model in the specific case of a small low-thrust propelled spacecraft beginning its journey from the Sun–Earth L2 Lagrangian point and heading to a rendezvous with some near-Earth asteroid.We consider five increasingly complex trajectory models:impulsive,Lambert,nuclear electric propulsion,nuclear electric propulsion including the Earth’s gravity,solar electric propulsion including the Earth’s gravity and we study the final correlation between the obtained target rankings.We find that the use of a lowthrust trajectory model is of great importance for target selection,since the use of chemical propulsion surrogates leads to favouring less attractive options 19%of times,a percentage that drops to 8%already using a simple nuclear electric propulsion model that neglects the Earth’s gravity effects and thrust dependence on the solar distance.We also find that for the study case considered,a small interplanetary CubeSat named M-ARGO,the inclusion of the Earth’s gravity in the considered dynamics does not affect the target selection significantly.展开更多
Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary def...Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary defense research,which has won the attention of the government and attracted more and more scholars and organizations.This paper summarizes the research progress in planetary defense in China in recent years,including the fireball events in China,academic activities and policy planning,monitoring and warning technology,onorbit defense technology,impact hazard assessment,international cooperation and science popularization.展开更多
文摘The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.
基金supported by the National Natural Science Foundation of China(Grant11372311)the grant from the State key Laboratory of Astronautic Dynamics(2014-ADL-DW0201)
文摘In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.
文摘The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the earth. The orbital evolution of this kind of asteroid is studied by analyzing and comparing them; reasonable dynamical models and corresponding algorithm are given, and the formal numbered NEAs are calculated. The results of the minimal distance and the very closeapproach time with the earth agree well with those announced by the Minor Planet Center (MPC).
文摘The preliminary mission design of spacecraft missions to asteroids often involves,in the early phases,the selection of candidate target asteroids.The final result of such an analysis is a list of asteroids,ranked with respect to the necessary propellant to be used,that the spacecraft could potentially reach.In this paper we investigate the sensitivity of the produced asteroids rank to the employed trajectory model in the specific case of a small low-thrust propelled spacecraft beginning its journey from the Sun–Earth L2 Lagrangian point and heading to a rendezvous with some near-Earth asteroid.We consider five increasingly complex trajectory models:impulsive,Lambert,nuclear electric propulsion,nuclear electric propulsion including the Earth’s gravity,solar electric propulsion including the Earth’s gravity and we study the final correlation between the obtained target rankings.We find that the use of a lowthrust trajectory model is of great importance for target selection,since the use of chemical propulsion surrogates leads to favouring less attractive options 19%of times,a percentage that drops to 8%already using a simple nuclear electric propulsion model that neglects the Earth’s gravity effects and thrust dependence on the solar distance.We also find that for the study case considered,a small interplanetary CubeSat named M-ARGO,the inclusion of the Earth’s gravity in the considered dynamics does not affect the target selection significantly.
基金Supported by the Beijing Municipal Science and Technology Commission(Z181100002918004)the Strategic Priority Program on Space Science(XDA15014900)the Civil Aerospace Preliminary Research Project(KJSP2020020101,CAS)。
文摘Near-Earth Asteroids(NEA)impose potential major disaster to humanity.Planetary defense is an inevitable requirement for the survival of human civilization.In recent years,China has made rapid progress in planetary defense research,which has won the attention of the government and attracted more and more scholars and organizations.This paper summarizes the research progress in planetary defense in China in recent years,including the fireball events in China,academic activities and policy planning,monitoring and warning technology,onorbit defense technology,impact hazard assessment,international cooperation and science popularization.