期刊文献+
共找到2,764篇文章
< 1 2 139 >
每页显示 20 50 100
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections
1
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
A Unified Model Fusing Region of Interest Detection and Super Resolution for Video Compression
2
作者 Xinkun Tang Feng Ouyang +2 位作者 Ying Xu Ligu Zhu Bo Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期3955-3975,共21页
High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-... High-resolution video transmission requires a substantial amount of bandwidth.In this paper,we present a novel video processing methodology that innovatively integrates region of interest(ROI)identification and super-resolution enhancement.Our method commences with the accurate detection of ROIs within video sequences,followed by the application of advanced super-resolution techniques to these areas,thereby preserving visual quality while economizing on data transmission.To validate and benchmark our approach,we have curated a new gaming dataset tailored to evaluate the effectiveness of ROI-based super-resolution in practical applications.The proposed model architecture leverages the transformer network framework,guided by a carefully designed multi-task loss function,which facilitates concurrent learning and execution of both ROI identification and resolution enhancement tasks.This unified deep learning model exhibits remarkable performance in achieving super-resolution on our custom dataset.The implications of this research extend to optimizing low-bitrate video streaming scenarios.By selectively enhancing the resolution of critical regions in videos,our solution enables high-quality video delivery under constrained bandwidth conditions.Empirical results demonstrate a 15%reduction in transmission bandwidth compared to traditional super-resolution based compression methods,without any perceivable decline in visual quality.This work thus contributes to the advancement of video compression and enhancement technologies,offering an effective strategy for improving digital media delivery efficiency and user experience,especially in bandwidth-limited environments.The innovative integration of ROI identification and super-resolution presents promising avenues for future research and development in adaptive and intelligent video communication systems. 展开更多
关键词 Super resolution region of interest detection video compression
下载PDF
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
3
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
SwinVid:Enhancing Video Object Detection Using Swin Transformer
4
作者 Abdelrahman Maharek Amr Abozeid +1 位作者 Rasha Orban Kamal ElDahshan 《Computer Systems Science & Engineering》 2024年第2期305-320,共16页
What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reas... What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reasons have made video object detection(VID)a growing area of research in recent years.Video object detection can be used for various healthcare applications,such as detecting and tracking tumors in medical imaging,monitoring the movement of patients in hospitals and long-term care facilities,and analyzing videos of surgeries to improve technique and training.Additionally,it can be used in telemedicine to help diagnose and monitor patients remotely.Existing VID techniques are based on recurrent neural networks or optical flow for feature aggregation to produce reliable features which can be used for detection.Some of those methods aggregate features on the full-sequence level or from nearby frames.To create feature maps,existing VID techniques frequently use Convolutional Neural Networks(CNNs)as the backbone network.On the other hand,Vision Transformers have outperformed CNNs in various vision tasks,including object detection in still images and image classification.We propose in this research to use Swin-Transformer,a state-of-the-art Vision Transformer,as an alternative to CNN-based backbone networks for object detection in videos.The proposed architecture enhances the accuracy of existing VID methods.The ImageNet VID and EPIC KITCHENS datasets are used to evaluate the suggested methodology.We have demonstrated that our proposed method is efficient by achieving 84.3%mean average precision(mAP)on ImageNet VID using less memory in comparison to other leading VID techniques.The source code is available on the website https://github.com/amaharek/SwinVid. 展开更多
关键词 video object detection vision transformers convolutional neural networks deep learning
下载PDF
CVTD: A Robust Car-Mounted Video Text Detector
5
作者 Di Zhou Jianxun Zhang +2 位作者 Chao Li Yifan Guo Bowen Li 《Computers, Materials & Continua》 SCIE EI 2024年第2期1821-1842,共22页
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted vid... Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios. 展开更多
关键词 Deep learning text detection Car-mounted video text detector intelligent driving assistance arbitrary shape text detector
下载PDF
Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning 被引量:1
6
作者 Latifah Almuqren Manar Ahmed Hamza +1 位作者 Abdullah Mohamed Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第6期4917-4933,共17页
Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments... Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments in deep learning(DL)and computer vision(CV)techniques enable the design of automated face recognition and tracking methods.This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking(HHODL-AFDT)method.The proposed HHODL-AFDT model involves a Faster region based convolution neural network(RCNN)-based face detection model and HHO-based hyperparameter opti-mization process.The presented optimal Faster RCNN model precisely rec-ognizes the face and is passed into the face-tracking model using a regression network(REGN).The face tracking using the REGN model uses the fea-tures from neighboring frames and foresees the location of the target face in succeeding frames.The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work.The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60%and 88.08%under PICS and VTB datasets,respectively. 展开更多
关键词 Face detection face tracking deep learning computer vision video surveillance parameter tuning
下载PDF
Realtime Object Detection Through M-ResNet in Video Surveillance System 被引量:1
7
作者 S.Prabu J.M.Gnanasekar 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2257-2271,共15页
Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.Ho... Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection. 展开更多
关键词 Object detection ResNet video survilence image processing object quality
下载PDF
ISHD:Intelligent Standing Human Detection of Video Surveillance for the Smart Examination Environment 被引量:1
8
作者 Wu Song Yayuan Tang +1 位作者 Wenxue Tan Sheng Ren 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期509-526,共18页
In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior(human standing) for the construction of a smart campus. Based on deep learning, we propose an intellige... In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior(human standing) for the construction of a smart campus. Based on deep learning, we propose an intelligentstanding human detection (ISHD) method based on an improved single shot multibox detector to detect thetarget of standing human posture in the scene frame of exam room video surveillance at a specific examinationstage. ISHD combines the MobileNet network in a single shot multibox detector network, improves the posturefeature extractor of a standing person, merges prior knowledge, and introduces transfer learning in the trainingstrategy, which greatly reduces the computation amount, improves the detection accuracy, and reduces the trainingdifficulty. The experiment proves that the model proposed in this paper has a better detection ability for the smalland medium-sized standing human body posture in video test scenes on the EMV-2 dataset. 展开更多
关键词 Deep learning object detection video surveillance of exam room smart examination environment
下载PDF
An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video
9
作者 Sareer Ul Amin Yongjun Kim +2 位作者 Irfan Sami Sangoh Park Sanghyun Seo 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3939-3958,共20页
In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous e... In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous events manually in thesemassive video records since they happen infrequently and with a low probability in real-world monitoring systems.Therefore,intelligent surveillance is a requirement of the modern day,as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies.In this article,we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance video(ADSV).At the input of the ADSV,a shots boundary detection technique is used to segment prominent frames.Next,The Lightweight ConvolutionNeuralNetwork(LWCNN)model receives the segmented frames to extract spatial and temporal information from the intermediate layer.Following that,spatial and temporal features are learned using Long Short-Term Memory(LSTM)cells and Attention Network from a series of frames for each anomalous activity in a sample.To detect motion and action,the LWCNN received chronologically sorted frames.Finally,the anomaly activity in the video is identified using the proposed trained ADSV model.Extensive experiments are conducted on complex and challenging benchmark datasets.In addition,the experimental results have been compared to state-ofthe-artmethodologies,and a significant improvement is attained,demonstrating the efficiency of our ADSV method. 展开更多
关键词 Attention-based anomaly detection video shots segmentation video surveillance computer vision deep learning smart surveillance system violence detection attention model
下载PDF
An Efficient Method for Underwater Video Summarization and Object Detection Using YoLoV3
10
作者 Mubashir Javaid Muazzam Maqsood +2 位作者 Farhan Aadil Jibran Safdar Yongsung Kim 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1295-1310,共16页
Currently,worldwide industries and communities are concerned with building,expanding,and exploring the assets and resources found in the oceans and seas.More precisely,to analyze a stock,archaeology,and surveillance,s... Currently,worldwide industries and communities are concerned with building,expanding,and exploring the assets and resources found in the oceans and seas.More precisely,to analyze a stock,archaeology,and surveillance,sev-eral cameras are installed underseas to collect videos.However,on the other hand,these large size videos require a lot of time and memory for their processing to extract relevant information.Hence,to automate this manual procedure of video assessment,an accurate and efficient automated system is a greater necessity.From this perspective,we intend to present a complete framework solution for the task of video summarization and object detection in underwater videos.We employed a perceived motion energy(PME)method tofirst extract the keyframes followed by an object detection model approach namely YoloV3 to perform object detection in underwater videos.The issues of blurriness and low contrast in underwater images are also taken into account in the presented approach by applying the image enhancement method.Furthermore,the suggested framework of underwater video summarization and object detection has been evaluated on a publicly available brackish dataset.It is observed that the proposed framework shows good performance and hence ultimately assists several marine researchers or scientists related to thefield of underwater archaeology,stock assessment,and surveillance. 展开更多
关键词 Computer vision deep learning digital image processing underwater video analysis video summarization object detection YOLOV3
下载PDF
COVAD: Content-oriented video anomaly detection using a self attention-based deep learning model
11
作者 Wenhao SHAO Praboda RAJAPAKSHA +3 位作者 Yanyan WEI Dun LI Noel CRESPI Zhigang LUO 《Virtual Reality & Intelligent Hardware》 2023年第1期24-41,共18页
Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than consider... Background Video anomaly detection has always been a hot topic and has attracted increasing attention.Many of the existing methods for video anomaly detection depend on processing the entire video rather than considering only the significant context. Method This paper proposes a novel video anomaly detection method called COVAD that mainly focuses on the region of interest in the video instead of the entire video. Our proposed COVAD method is based on an autoencoded convolutional neural network and a coordinated attention mechanism,which can effectively capture meaningful objects in the video and dependencies among different objects. Relying on the existing memory-guided video frame prediction network, our algorithm can significantly predict the future motion and appearance of objects in a video more effectively. Result The proposed algorithm obtained better experimental results on multiple datasets and outperformed the baseline models considered in our analysis. Simultaneously, we provide an improved visual test that can provide pixel-level anomaly explanations. 展开更多
关键词 video surveillance video anomaly detection Machine learning Deep learning Neural network Coordinate attention
下载PDF
Vision-based fatigue crack detection using global motion compensation and video feature tracking
12
作者 Rushil Mojidra Jian Li +3 位作者 Ali Mohammadkhorasani Fernando Moreu Caroline Bennett William Collins 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期19-39,共21页
Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human vi... Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm. 展开更多
关键词 global motion compensation fatigue crack detection computer vision parallax effect distortion induced fatigue crack video stabilization camera motion in-plane fatigue crack out-of-plane fatigue crackanalysis
下载PDF
Near-duplicate document detection with improved similarity measurement 被引量:2
13
作者 袁鑫攀 龙军 +1 位作者 张祖平 桂卫华 《Journal of Central South University》 SCIE EI CAS 2012年第8期2231-2237,共7页
To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be t... To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be too low and fewer fingerprints could lead to low accuracy. It can be proved that the efficiency of similarity retrieval is improved by fingerprint group merging retrieval algorithm with lower similarity threshold. Experiments with the lower similarity threshold r=0.7 and high fingerprint bits k=400 demonstrate that the CPU time-consuming cost decreases from 1 921 s to 273 s. Theoretical analysis and experimental results verify the effectiveness of this method. 展开更多
关键词 similarity estimation near-duplicate document detection fingerprint group Hamming distance minwise hashing
下载PDF
Real-time moving object detection for video monitoring systems 被引量:18
14
作者 Wei Zhiqiang Ji Xiaopeng Wang Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期731-736,共6页
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back... Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems. 展开更多
关键词 video monitoring system moving object detection background subtraction background model shadow elimination.
下载PDF
Automatic Feature Point Detection and Tracking of Human Actions in Time-of-flight Videos 被引量:8
15
作者 Xiaohui Yuan Longbo Kong +1 位作者 Dengchao Feng Zhenchun Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期677-685,共9页
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag... Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms. 展开更多
关键词 Feature point human pose detection joint detection time-of-flight(ToF) videos
下载PDF
The NDT detection of knobs' shape by video treatment technique 被引量:3
16
作者 任洪娥 马岩 +2 位作者 唐晓华 张瑞滨 朱晓明 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第3期191-193,共3页
The NDT detection of knobs of logs and timbers was conducted by using computer video technique.The key detection points were taken from these knobs for mathematics description. It can make the drawing ofthese knobs qu... The NDT detection of knobs of logs and timbers was conducted by using computer video technique.The key detection points were taken from these knobs for mathematics description. It can make the drawing ofthese knobs quantitatively and establish corresponding mathematics models. Using the grayness of pictures andcartoon if eatment made the mathemstics reappearance of the knobs become more access to video pictures. 展开更多
关键词 Knob. video treatment. NDT detection
下载PDF
Video Based Vehicle Detection and its Application in Intelligent Transportation Systems 被引量:8
17
作者 Naveen Chintalacheruvu Venkatesan Muthukumar 《Journal of Transportation Technologies》 2012年第4期305-314,共10页
Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper propose... Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper proposes an efficient video based vehicle detection system based on Harris-Stephen corner detector algorithm. The algorithm was used to develop a stand alone vehicle detection and tracking system that determines vehicle counts and speeds at arterial roadways and freeways. The proposed video based vehicle detection system was developed to eliminate the need of complex calibration, robustness to contrasts variations, and better performance with low resolutions videos. The algorithm performance for accuracy in vehicle counts and speed was evaluated. The performance of the proposed system is equivalent or better compared to a commercial vehicle detection system. Using the developed vehicle detection and tracking system an advance warning intelligent transportation system was designed and implemented to alert commuters in advance of speed reductions and congestions at work zones and special events. The effectiveness of the advance warning system was evaluated and the impact discussed. 展开更多
关键词 VEHICLE detection video and IMAGE PROCESSING ADVANCE WARNING Systems
下载PDF
Video Based Fire Detection Systems on Forest and Wildland Using Convolutional Neural Network 被引量:2
18
作者 HICINTUKA Jean Philippe ZHOU Wuneng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期149-157,共9页
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar... The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods. 展开更多
关键词 FIRE detection wildland fires convolutional NEURAL network(CNN) video SEQUENCES video ANALYSIS object ANALYSIS
下载PDF
Performance Analysis of Hybrid RR Algorithm for Anomaly Detection in Streaming Data
19
作者 L.Amudha R.PushpaLakshmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2299-2312,共14页
Automated live video stream analytics has been extensively researched in recent times.Most of the traditional methods for video anomaly detection is supervised and use a single classifier to identify an anomaly in a f... Automated live video stream analytics has been extensively researched in recent times.Most of the traditional methods for video anomaly detection is supervised and use a single classifier to identify an anomaly in a frame.We propose a 3-stage ensemble-based unsupervised deep reinforcement algorithm with an underlying Long Short Term Memory(LSTM)based Recurrent Neural Network(RNN).In the first stage,an ensemble of LSTM-RNNs are deployed to generate the anomaly score.The second stage uses the least square method for optimal anomaly score generation.The third stage adopts award-based reinforcement learning to update the model.The proposed Hybrid Ensemble RR Model was tested on standard pedestrian datasets UCSDPed1,USDPed2.The data set has 70 videos in UCSD Ped1 and 28 videos in UCSD Ped2 with a total of 18560 frames.Since a real-time stream has strict memory constraints and storage issues,a simple computing machine does not suffice in performing analytics with stream data.Hence the proposed research is designed to work on a GPU(Graphics Processing Unit),TPU(Tensor Processing Unit)supported framework.As shown in the experimental results section,recorded observations on framelevel EER(Equal Error Rate)and AUC(Area Under Curve)showed a 9%reduction in EER in UCSD Ped1,a 13%reduction in ERR in UCSD Ped2 and a 4%improvement in accuracy in both datasets. 展开更多
关键词 Anomaly detection deep learning ENSEMBLE REAL-TIME surveillance video
下载PDF
Weapons Detection for Security and Video Surveillance Using CNN and YOLO-V5s 被引量:2
20
作者 Abdul Hanan Ashraf Muhammad Imran +5 位作者 Abdulrahman M.Qahtani Abdulmajeed Alsufyani Omar Almutiry Awais Mahmood Muhammad Attique Mohamed Habib 《Computers, Materials & Continua》 SCIE EI 2022年第2期2761-2775,共15页
In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firear... In recent years,the number of Gun-related incidents has crossed over 250,000 per year and over 85%of the existing 1 billion firearms are in civilian hands,manual monitoring has not proven effective in detecting firearms.which is why an automated weapon detection system is needed.Various automated convolutional neural networks(CNN)weapon detection systems have been proposed in the past to generate good results.However,These techniques have high computation overhead and are slow to provide real-time detection which is essential for the weapon detection system.These models have a high rate of false negatives because they often fail to detect the guns due to the low quality and visibility issues of surveillance videos.This research work aims to minimize the rate of false negatives and false positives in weapon detection while keeping the speed of detection as a key parameter.The proposed framework is based on You Only Look Once(YOLO)and Area of Interest(AOI).Initially,themodels take pre-processed frames where the background is removed by the use of the Gaussian blur algorithm.The proposed architecture will be assessed through various performance parameters such as False Negative,False Positive,precision,recall rate,and F1 score.The results of this research work make it clear that due to YOLO-v5s high recall rate and speed of detection are achieved.Speed reached 0.010 s per frame compared to the 0.17 s of the Faster R-CNN.It is promising to be used in the field of security and weapon detection. 展开更多
关键词 video surveillance weapon detection you only look once convolutional neural networks
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部