For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consid...For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.展开更多
变速控制力矩陀螺(variable speed control moment gyro,VSCMG)簇相对于单框架控制力矩陀螺簇仅增加了飞轮转速可调自由度,实现难度不大,但能够缓解奇异问题。基于线性代数理论,从机理上分析了已有的添加零运动的加权伪逆操纵律不能规避...变速控制力矩陀螺(variable speed control moment gyro,VSCMG)簇相对于单框架控制力矩陀螺簇仅增加了飞轮转速可调自由度,实现难度不大,但能够缓解奇异问题。基于线性代数理论,从机理上分析了已有的添加零运动的加权伪逆操纵律不能规避VSCMG簇内所有奇异点。针对添加零运动的加权伪逆操纵律不能规避奇异点的问题,采用优化方法,设计出一种新型的VSCMG簇操纵律,能够规避采用传统添加零运动的加权伪逆操纵律不能规避的奇异点。最后搭建整个航天器姿态控制系统,仿真验证了所设计的新型操纵律奇异规避的有效性。展开更多
基金partially supported by the NSFC(11571177)the Priority Academic Program Development of Jiangsu Higher Education Institutionspartially funded by the DFG through the Sino-German Project "Analysis of PDEs and Applications"
文摘For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.
文摘变速控制力矩陀螺(variable speed control moment gyro,VSCMG)簇相对于单框架控制力矩陀螺簇仅增加了飞轮转速可调自由度,实现难度不大,但能够缓解奇异问题。基于线性代数理论,从机理上分析了已有的添加零运动的加权伪逆操纵律不能规避VSCMG簇内所有奇异点。针对添加零运动的加权伪逆操纵律不能规避奇异点的问题,采用优化方法,设计出一种新型的VSCMG簇操纵律,能够规避采用传统添加零运动的加权伪逆操纵律不能规避的奇异点。最后搭建整个航天器姿态控制系统,仿真验证了所设计的新型操纵律奇异规避的有效性。