In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions,the free-field shockwave,ground reflection shockwave and Mach wave overpressure time history of compos...In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions,the free-field shockwave,ground reflection shockwave and Mach wave overpressure time history of composition B explosive,RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors.The shape of the free-field shock wave,ground reflection shock wave,and Mach wave and explosion flame were captured by high-speed camera.The experimental results show that,at the same horizontal distance from the initiation point,the peak overpressure of explosive shock wave of composition B explosive,both in the air and on the ground,is less than that of RDX and aluminized explosives.At a distance of 3.0 m from the initiation point,the peak overpressure of aluminized explosives is slightly less than that of RDX explosives.Owing to the exothermic effect of aluminum powder,the pressure drop of aluminized explosives is slower than that of RDX explosives.At 5.0 m from the initiation point,the peak overpressure of aluminized explosives is larger than that of RDX explosives.At the same position from the initiation point,among the three kinds of explosives,the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum.With the increase of the horizontal distance from the initiation point,the height of Mach triple-points(Mach steam)of the three explosives increases gradually.At the same horizontal distance from the initiation point,there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive,and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives.The maximum diameter and duration of the fireball formed by aluminized explosives are the largest,followed by composition B explosive,and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest.展开更多
The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if...The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.展开更多
This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ign...This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ignore the need of navigation method for UAVs working on specific operating surfaces in near-ground space.In this paper,a novel near-ground trajectory planning framework is proposed,where the hybrid voxel-surfel map is developed to model the environment with special attention to the uneven operating surface.To improve the frequency of updates,a probability-based surfel fusion method and a resolution adaptive adjustment method based on the fusion result are proposed in this paper.By using possibility information in the map,a path search method is established to generate the initial trajectory.The trajectory is then further optimized based on map gradient information to generate a final trajectory that tracks the specified operating surface according to the task requirements.Compared with existing methods,the multi-resolution hybrid voxel-surfel map proposed in this paper has advantages in terms of operating efficiency.A series of experiments in simulated and real scenarios validate the effectiveness of the proposed trajectory planning framework.展开更多
电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基...电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。展开更多
基金supported by the National Natural Science Foundation of China(No.11732003)Beijing Natural Science Foundation(No.8182050)+1 种基金Science Challenge Project(No.TZ2016001)National Key Research and Development Program of China(No.2017YFC0804700)。
文摘In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions,the free-field shockwave,ground reflection shockwave and Mach wave overpressure time history of composition B explosive,RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors.The shape of the free-field shock wave,ground reflection shock wave,and Mach wave and explosion flame were captured by high-speed camera.The experimental results show that,at the same horizontal distance from the initiation point,the peak overpressure of explosive shock wave of composition B explosive,both in the air and on the ground,is less than that of RDX and aluminized explosives.At a distance of 3.0 m from the initiation point,the peak overpressure of aluminized explosives is slightly less than that of RDX explosives.Owing to the exothermic effect of aluminum powder,the pressure drop of aluminized explosives is slower than that of RDX explosives.At 5.0 m from the initiation point,the peak overpressure of aluminized explosives is larger than that of RDX explosives.At the same position from the initiation point,among the three kinds of explosives,the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum.With the increase of the horizontal distance from the initiation point,the height of Mach triple-points(Mach steam)of the three explosives increases gradually.At the same horizontal distance from the initiation point,there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive,and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives.The maximum diameter and duration of the fireball formed by aluminized explosives are the largest,followed by composition B explosive,and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest.
文摘The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.
基金supported by the National Natural Science Foundation of China(Grant Nos.62225305,12072088,62003117,and 62003118)the National Defense Basic Scientific Research Program of China(Grant No.JCKY2020603B010)+1 种基金the Lab of Space Optoelectronic Measurement&Perception(Grant No.LabSOMP-2021-06)the Natural Science Foundation of Heilongjiang Province,China(Grant No.ZD2020F001)。
文摘This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ignore the need of navigation method for UAVs working on specific operating surfaces in near-ground space.In this paper,a novel near-ground trajectory planning framework is proposed,where the hybrid voxel-surfel map is developed to model the environment with special attention to the uneven operating surface.To improve the frequency of updates,a probability-based surfel fusion method and a resolution adaptive adjustment method based on the fusion result are proposed in this paper.By using possibility information in the map,a path search method is established to generate the initial trajectory.The trajectory is then further optimized based on map gradient information to generate a final trajectory that tracks the specified operating surface according to the task requirements.Compared with existing methods,the multi-resolution hybrid voxel-surfel map proposed in this paper has advantages in terms of operating efficiency.A series of experiments in simulated and real scenarios validate the effectiveness of the proposed trajectory planning framework.
文摘电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。