A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Magneto-transport properties of insulating bulk states in Bi(111) films are systematically investigated under the parallel field (BⅡ). We find that the magnetotransport of the Bll field is a more powerful tool to...Magneto-transport properties of insulating bulk states in Bi(111) films are systematically investigated under the parallel field (BⅡ). We find that the magnetotransport of the Bll field is a more powerful tool to distinguish the bulk states and the surface states. A large magnetoresistance (MR) up to 20% in the BⅡ field is induced by the insulating bulk states for the suppression of the backward scattering. With the increasing thickness, a positive MR(BⅡ) from magnetic induced boundary scattering appears in the semimetal films. As the thickness is reduced to 1Ohm, the positive MR(BⅡ) is induced by weak anti-localization from the surface states.展开更多
In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic va...In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic vacuum multilayer insulation film structure.It can quickly lower the surface temperature of space target,approaching to the ultra-low temperature of the space environment.A vacuum simulation verification test was designed and performed.Through the analysis of test results,we can see that the surface temperature of space target covered by the structure changes with the ambient temperature,having no direct relationship with internal temperature of the target.Therefore,the designed cryogenic vacuum multilayer insulation film structure has excellent IR radiation control performance.It can reduce the target’s IR radiation intensity so as to reduce the probability of detection by IR detectors.展开更多
We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surfa...We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.展开更多
We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) fil...We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) films become QSH insulators after being chemically functionalized by hydrogen (H) or halogen (C1 and Br) atoms. The energy gaps of the functionalized films range from 0.121 eV to 0.304 eV, which are sufficiently large for practical applications at room temperature. The energy gaps originate from the spin-orbit coupling (SOC). The energy gap increases linearly with the increase of the SOC strength λ/λ0. The Z2 invariant and the penetration depth of the edge states are also calculated and studied for the functionalized films.展开更多
To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enha...To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices.展开更多
We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization b...We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.展开更多
NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here ...NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.展开更多
Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we ex...Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.展开更多
Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is be...Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.展开更多
In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral ...In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral impact ionizations for the first time. Supported by experimental data, the analytical model predicts that the avalanche multiplication governed by impact ionization shows kinks and the impact ionization effect is small compared with that of the bulk HBT, resulting in a larger base-collector breakdown voltage. The model presented in the paper is significant and has useful applications in the design and simulation of the next generation of SiCe SOI BiCMOS technology.展开更多
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金Supported by the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China under Grant No 10XNF086
文摘Magneto-transport properties of insulating bulk states in Bi(111) films are systematically investigated under the parallel field (BⅡ). We find that the magnetotransport of the Bll field is a more powerful tool to distinguish the bulk states and the surface states. A large magnetoresistance (MR) up to 20% in the BⅡ field is induced by the insulating bulk states for the suppression of the backward scattering. With the increasing thickness, a positive MR(BⅡ) from magnetic induced boundary scattering appears in the semimetal films. As the thickness is reduced to 1Ohm, the positive MR(BⅡ) is induced by weak anti-localization from the surface states.
基金Sponsored by the High-tech Research and Development Program of China (Grant No. 2007AA701101B)
文摘In order to achieve the objective of controlling IR radiation characteristics of space target,we design multilayer insulation film structure to cover the target.In space environment the structure comes to cryogenic vacuum multilayer insulation film structure.It can quickly lower the surface temperature of space target,approaching to the ultra-low temperature of the space environment.A vacuum simulation verification test was designed and performed.Through the analysis of test results,we can see that the surface temperature of space target covered by the structure changes with the ambient temperature,having no direct relationship with internal temperature of the target.Therefore,the designed cryogenic vacuum multilayer insulation film structure has excellent IR radiation control performance.It can reduce the target’s IR radiation intensity so as to reduce the probability of detection by IR detectors.
基金the National Natural Science Foundation of China(Grant No.11274108)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114306110008)
文摘We study the electronic structure and spin polarization of the surface states of a three-dimensional topological insulator thin film modulated by an electrical potential well. By routinely solving the low-energy surface Dirac equation for the system, we demonstrate that confined surface states exist, in which the electron density is almost localized inside the well and exponentially decayed outside in real space, and that their subband dispersions are quasilinear with respect to the propagating wavevector. Interestingly, the top and bottom surface confined states with the same density distribution have opposite spin polarizations due to the hybridization between the two surfaces. Along with the mathematical analysis, we provide an intuitive, topological understanding of the effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474197,U1632272,and 11521404)
文摘We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) films become QSH insulators after being chemically functionalized by hydrogen (H) or halogen (C1 and Br) atoms. The energy gaps of the functionalized films range from 0.121 eV to 0.304 eV, which are sufficiently large for practical applications at room temperature. The energy gaps originate from the spin-orbit coupling (SOC). The energy gap increases linearly with the increase of the SOC strength λ/λ0. The Z2 invariant and the penetration depth of the edge states are also calculated and studied for the functionalized films.
基金Project supported by the Postgraduate Innovation Foundation of Jiangsu Province,China (Grant No.CX09B 090Z)the Key Postgraduate Plan of Nanjing University of Science and Technology,China
文摘To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11304316the Ministry of Science and Technology of China under Grant No 2011YQ130018the Department of Science and Technology of Yunnan Province,and the Chinese Academy of Sciences
文摘We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.
文摘NdNiO_(3) is a typical correlated material with temperature-driven metal–insulator transition. Resolving the local electronic phase is crucial in understanding the driving mechanism behind the phase transition. Here we present a nano-infrared study of the metal–insulator transition in NdNiO_(3) films by a cryogenic scanning near-field optical microscope. The NdNiO_(3) films undergo a continuous transition without phase coexistence. The nano-infrared signal shows significant temperature dependence and a hysteresis loop. Stripe-like modulation of the optical conductivity is formed in the films and can be attributed to the epitaxial strain. These results provide valuable evidence to understand the coupled electronic and structural transformations in NdNiO_(3) films at the nano-scale.
基金Supported by the National Natural Science Foundation of China under Grant No 61574048the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172
文摘Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.
基金Supported by the National Natural Science Foundation of China (Grant Nos.61804056 and 92065102)。
文摘Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.
基金supported by the Science Foundation of National Ministries and Commissions (Grant Nos. 51308040203 and 6139801)the Fundamental Research Funds for the Central Universities of China (Grant Nos. 72105499 and 72104089)the Natural Science Basic Research Program in Shaanxi Province of China (Grant No. 2010JQ8008)
文摘In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral impact ionizations for the first time. Supported by experimental data, the analytical model predicts that the avalanche multiplication governed by impact ionization shows kinks and the impact ionization effect is small compared with that of the bulk HBT, resulting in a larger base-collector breakdown voltage. The model presented in the paper is significant and has useful applications in the design and simulation of the next generation of SiCe SOI BiCMOS technology.