With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concep...With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concepts and principles of ecological scenic forest and near-nature management,and combining with the present construction of ecological scenic forest in Shenzhen City,specifically stated the requirements,principles and implementation measures of different aspects involving in the construction of ecological scenic forest in Shenzhen,such as site classification,tree species selection,logging operation,community construction,tending management and benefit monitoring,and further expounded the application of near-nature management theories in this field.It was also stressed that the nature should be utilized and respected,artificial forest should be reformed into near-nature scenic forest with richer and more stable structure as well as higher protective eco-functions,so as to provide theoretical basis for the construction of ecological scenic forest and enhance its positive role in the urban construction of Shenzhen.展开更多
Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cy...Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cycles, each natural forst landscape is defined according to the variability of its structure and composition, and compared to the present-day landscape. This analysis was conducted to address the question of whether human activities have moved these ecosystems outside the range of natural landscape variability.Methods: The study encompassed a forested area of 175 000 km2 divided into 14 landscapes. Using a framework that integrates fire cycles, age structure and forest dynamics, we characterized the forest composition and age structures that resulted from three historical fire cycles(110,140, and 180 years) representative of the boreal forest of eastern Canada. The modeled natural landscapes were compared with present-day landscapes in regard to the proportion of old-growth forests(landscape level) and the proportion of late-successional forest stands(landscape level and potential vegetation type).Results: Four landscapes(39%) remain within their natural range of variability. In contrast, nine landscapes(54%)show a large gap between natural and present-day landscapes. These nine are located in the southern portion of the study area, and are mainly associated with Abies-Betula vegetation where human activities have contributed to a strong increase in the proportion of Populus tremuloides stands(early-successional stages) and a decrease of oldgrowth forest stands(more than 100 years old). A single landscape(7%), substantially changed from its potential natural state, is a candidate for adaptive-based management.Conclusion: Comparison of corresponding natural(reference conditions) and present-day landscapes showed that ten landscapes reflecting an important shift in forest composition and age structure could be considered beyond the range of their natural variability. The description of a landscape's natural variability at the scale of several millennia can be considered a moving benchmark that can be re-evaluated in the context of climate change.Focusing on regional landscape characteristics and long-term natural variability of vegetation and forest age structure represents a step forward in methodology for defining reference conditions and following shifts in landscape over time.展开更多
Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important...Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important issue.While there are many experimental and local studies that aim at disentangling the relationships between different environmental and silvicultural factors and the success of oak regeneration, systematic supra-regional studies at the greater landscape level are missing so far.Against this background, the first objective(a) of this study was to present an efficient and sufficiently accurate sampling scheme for supra-regional forest regrowth inventories, which we applied to young oaks stands. The second, and major, objective(b) was to identify the crucial success factors for high-quality oak forest regeneration in northwest Germany.Results: Objective(a): Factors that have been identified as potentially crucial for the success or failure of oak regeneration were either included in a field inventory procedure or extracted from forest inventory databases. We found that the collected data were suitable to be analyzed in a three-step success model, which was aimed at identifying the crucial success factors for high-quality oak forest regeneration.Objective(b): Our modeling procedure, which included a Bayesian estimation approach with spike-and-slab priors,revealed that competitive pressure from the secondary tree species was the most decisive success factor;no competition, or low competition by secondary tree species appeared to be particularly beneficial for the success of high-quality oak regeneration. Also fencing and the absence of competitive vegetation(weeds, grass, bracken)seemed to be beneficial factors for the success of oak regeneration.Conclusions: Trusting in biological automation was found to be mostly useless regarding economically viable oak forest regeneration. To efficiently organize oak regeneration planning and silvicultural decision-making within a forest enterprise, it is strongly recommended to initially evaluate the annual financial and personnel capacities for carrying out young growth tending or pre-commercial thinning and only then to decide on the extent of regenerated oak stands. Careful and adaptive regeneration planning is also indispensable to secure the long-term ecological continuity in oak forests. Oak regeneration should therefore preferably take place within the close vicinity of old oak stands or directly in them. The retention of habitat trees is urgently advised.展开更多
基金Sponsored by International Scientific and Technological Cooperation Project of Ministry of Science and Technology(2007DFA31070)Specialized Fund of Basic S&T Expenses for Central Government Level Research Institutes of Public Interest(CAFYBB2008004)~~
文摘With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concepts and principles of ecological scenic forest and near-nature management,and combining with the present construction of ecological scenic forest in Shenzhen City,specifically stated the requirements,principles and implementation measures of different aspects involving in the construction of ecological scenic forest in Shenzhen,such as site classification,tree species selection,logging operation,community construction,tending management and benefit monitoring,and further expounded the application of near-nature management theories in this field.It was also stressed that the nature should be utilized and respected,artificial forest should be reformed into near-nature scenic forest with richer and more stable structure as well as higher protective eco-functions,so as to provide theoretical basis for the construction of ecological scenic forest and enhance its positive role in the urban construction of Shenzhen.
基金funded by the Ministère des Forêts,de la Faune et des Parcs du Québec(MFFP).The funds were used mainly for the salary of the authors working for the MFFP
文摘Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cycles, each natural forst landscape is defined according to the variability of its structure and composition, and compared to the present-day landscape. This analysis was conducted to address the question of whether human activities have moved these ecosystems outside the range of natural landscape variability.Methods: The study encompassed a forested area of 175 000 km2 divided into 14 landscapes. Using a framework that integrates fire cycles, age structure and forest dynamics, we characterized the forest composition and age structures that resulted from three historical fire cycles(110,140, and 180 years) representative of the boreal forest of eastern Canada. The modeled natural landscapes were compared with present-day landscapes in regard to the proportion of old-growth forests(landscape level) and the proportion of late-successional forest stands(landscape level and potential vegetation type).Results: Four landscapes(39%) remain within their natural range of variability. In contrast, nine landscapes(54%)show a large gap between natural and present-day landscapes. These nine are located in the southern portion of the study area, and are mainly associated with Abies-Betula vegetation where human activities have contributed to a strong increase in the proportion of Populus tremuloides stands(early-successional stages) and a decrease of oldgrowth forest stands(more than 100 years old). A single landscape(7%), substantially changed from its potential natural state, is a candidate for adaptive-based management.Conclusion: Comparison of corresponding natural(reference conditions) and present-day landscapes showed that ten landscapes reflecting an important shift in forest composition and age structure could be considered beyond the range of their natural variability. The description of a landscape's natural variability at the scale of several millennia can be considered a moving benchmark that can be re-evaluated in the context of climate change.Focusing on regional landscape characteristics and long-term natural variability of vegetation and forest age structure represents a step forward in methodology for defining reference conditions and following shifts in landscape over time.
基金the funding of the project “Quer Con–Longterm conservation of ecological continuity in oak forests”(Grant number32694)by the German Federal Environmental Foundation(DBU)
文摘Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important issue.While there are many experimental and local studies that aim at disentangling the relationships between different environmental and silvicultural factors and the success of oak regeneration, systematic supra-regional studies at the greater landscape level are missing so far.Against this background, the first objective(a) of this study was to present an efficient and sufficiently accurate sampling scheme for supra-regional forest regrowth inventories, which we applied to young oaks stands. The second, and major, objective(b) was to identify the crucial success factors for high-quality oak forest regeneration in northwest Germany.Results: Objective(a): Factors that have been identified as potentially crucial for the success or failure of oak regeneration were either included in a field inventory procedure or extracted from forest inventory databases. We found that the collected data were suitable to be analyzed in a three-step success model, which was aimed at identifying the crucial success factors for high-quality oak forest regeneration.Objective(b): Our modeling procedure, which included a Bayesian estimation approach with spike-and-slab priors,revealed that competitive pressure from the secondary tree species was the most decisive success factor;no competition, or low competition by secondary tree species appeared to be particularly beneficial for the success of high-quality oak regeneration. Also fencing and the absence of competitive vegetation(weeds, grass, bracken)seemed to be beneficial factors for the success of oak regeneration.Conclusions: Trusting in biological automation was found to be mostly useless regarding economically viable oak forest regeneration. To efficiently organize oak regeneration planning and silvicultural decision-making within a forest enterprise, it is strongly recommended to initially evaluate the annual financial and personnel capacities for carrying out young growth tending or pre-commercial thinning and only then to decide on the extent of regenerated oak stands. Careful and adaptive regeneration planning is also indispensable to secure the long-term ecological continuity in oak forests. Oak regeneration should therefore preferably take place within the close vicinity of old oak stands or directly in them. The retention of habitat trees is urgently advised.