In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
The Sun contains ~74% hydrogen by weight. The isotope hydrogen-1 (99.985% of hydrogen in nature) is a usable fuel for fusion thermonuclear reactions. This reaction runs slowly within the Sun because its temperature is...The Sun contains ~74% hydrogen by weight. The isotope hydrogen-1 (99.985% of hydrogen in nature) is a usable fuel for fusion thermonuclear reactions. This reaction runs slowly within the Sun because its temperature is low (relative to the needs of nuclear reactions). If we create higher temperature and density in a limited region of the solar interior, we may be able to produce self-supporting detonation thermonuclear reactions that spread to the full solar volume. This is analogous to the triggering mechanisms in a thermonuclear bomb. Conditions within the bomb can be optimized in a small area to initiate ignition, then spread to a larger area, allowing producing a hydrogen bomb of any power. In the case of the Sun certain targeting practices may greatly increase the chances of an artificial explosion of the Sun. This explosion would annihilate the Earth and the Solar System, as we know them today. The reader naturally asks: Why even contemplate such a horrible scenario? It is necessary because as thermonuclear and space technology spreads to even the least powerful nations in the centuries ahead, a dying dictator having thermonuclear missile weapons can proce (with some considerable mobilization of his military/industrial complex)—an artificial explosion of the Sun and take into his grave the whole of humanity. It might take tens of thousands of people to make and launch the hardware, but only a very few need know the final targeting data of what might be otherwise a weapon purely thought of (within the dictator’s defense industry) as being built for peaceful, deterrent use. Those concerned about Man’s future must know about this possibility and create some protective system—or ascertain on theoretical grounds that it is entirely impossie. Humanity has fears, justified to greater or lesser degrees, about asteroids, warming of Earthly climate, extinctions, etc. which have very small probability. But all these would leave survivors—nobody thinks that the terrible annihilation of the Solar System would leave a single person alive. That explosion appears possible at the present time. In this paper is derived the “AB-Criterion” which shows conditions wherein the artificial explosion of Sun is possible. The author urges detailed investigation and proving or disproving of this rather horrifying possibility, so that it may be dismissed from mind—or defended against.展开更多
We are reviewing Freeman Dyson’s paper which alleged that detection of gravitons via LIGO, or by outer space experiments (due to probabilistic calculations which we review in the document), an impossibility. The disa...We are reviewing Freeman Dyson’s paper which alleged that detection of gravitons via LIGO, or by outer space experiments (due to probabilistic calculations which we review in the document), an impossibility. The disagreement we have with Dr. Dyson is that his probability calculations are taking place in almost infinite spatial domains, which renders the detection protocols, using his probability scheme, impossible. After we summarize the Dyson outer space arguments, and how Dyson got them, we will refer the reader to the very strain calculation done in the referenced PRD article, so cited, as to how a nuclear weapon could generate GW, and then afterwards, refer the reader to a 2nd paper, of how Tokamaks could detect GW/ Gravitons, as detectable by the 3DSR effect. Nowhere are we suggesting DETONITION of a nuclear device to generate GW! The reader is referred to another Li et al. PRD article, 2008, as to 3DSR, as to how detection of GW/Gravitons could occur due to something other than the Gertenshehtein effect, in this paper, i.e. they can look it up, and then in a 2nd follow up paper learn how a Tokamak could be utilized to have a finite sized geometry, for using the 3DSR effect for GW generation. The first paper highlights how if one assumes that only by use of infinite spatial geometry, and by using only the Gertenshehtein effect, that indeed one can convince oneself as to not bothering with the very real prospects of earthbound generation of Gravitons and GW, and that in doing so, GW research will be strictly limited, even with the outstanding results of LIGO, which in no way should be criticized. The entire analysis makes the case that foundational research as to the nature of GRAVITY means moving beyond the mental limitations place on GW/Graviton research by Dyson’s 2009 paper.展开更多
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
文摘The Sun contains ~74% hydrogen by weight. The isotope hydrogen-1 (99.985% of hydrogen in nature) is a usable fuel for fusion thermonuclear reactions. This reaction runs slowly within the Sun because its temperature is low (relative to the needs of nuclear reactions). If we create higher temperature and density in a limited region of the solar interior, we may be able to produce self-supporting detonation thermonuclear reactions that spread to the full solar volume. This is analogous to the triggering mechanisms in a thermonuclear bomb. Conditions within the bomb can be optimized in a small area to initiate ignition, then spread to a larger area, allowing producing a hydrogen bomb of any power. In the case of the Sun certain targeting practices may greatly increase the chances of an artificial explosion of the Sun. This explosion would annihilate the Earth and the Solar System, as we know them today. The reader naturally asks: Why even contemplate such a horrible scenario? It is necessary because as thermonuclear and space technology spreads to even the least powerful nations in the centuries ahead, a dying dictator having thermonuclear missile weapons can proce (with some considerable mobilization of his military/industrial complex)—an artificial explosion of the Sun and take into his grave the whole of humanity. It might take tens of thousands of people to make and launch the hardware, but only a very few need know the final targeting data of what might be otherwise a weapon purely thought of (within the dictator’s defense industry) as being built for peaceful, deterrent use. Those concerned about Man’s future must know about this possibility and create some protective system—or ascertain on theoretical grounds that it is entirely impossie. Humanity has fears, justified to greater or lesser degrees, about asteroids, warming of Earthly climate, extinctions, etc. which have very small probability. But all these would leave survivors—nobody thinks that the terrible annihilation of the Solar System would leave a single person alive. That explosion appears possible at the present time. In this paper is derived the “AB-Criterion” which shows conditions wherein the artificial explosion of Sun is possible. The author urges detailed investigation and proving or disproving of this rather horrifying possibility, so that it may be dismissed from mind—or defended against.
文摘We are reviewing Freeman Dyson’s paper which alleged that detection of gravitons via LIGO, or by outer space experiments (due to probabilistic calculations which we review in the document), an impossibility. The disagreement we have with Dr. Dyson is that his probability calculations are taking place in almost infinite spatial domains, which renders the detection protocols, using his probability scheme, impossible. After we summarize the Dyson outer space arguments, and how Dyson got them, we will refer the reader to the very strain calculation done in the referenced PRD article, so cited, as to how a nuclear weapon could generate GW, and then afterwards, refer the reader to a 2nd paper, of how Tokamaks could detect GW/ Gravitons, as detectable by the 3DSR effect. Nowhere are we suggesting DETONITION of a nuclear device to generate GW! The reader is referred to another Li et al. PRD article, 2008, as to 3DSR, as to how detection of GW/Gravitons could occur due to something other than the Gertenshehtein effect, in this paper, i.e. they can look it up, and then in a 2nd follow up paper learn how a Tokamak could be utilized to have a finite sized geometry, for using the 3DSR effect for GW generation. The first paper highlights how if one assumes that only by use of infinite spatial geometry, and by using only the Gertenshehtein effect, that indeed one can convince oneself as to not bothering with the very real prospects of earthbound generation of Gravitons and GW, and that in doing so, GW research will be strictly limited, even with the outstanding results of LIGO, which in no way should be criticized. The entire analysis makes the case that foundational research as to the nature of GRAVITY means moving beyond the mental limitations place on GW/Graviton research by Dyson’s 2009 paper.