期刊文献+
共找到1,287篇文章
< 1 2 65 >
每页显示 20 50 100
Applying an Ordinal Priority Approach Based Neutrosophic Fuzzy Axiomatic Design Approach to Develop Sustainable Geothermal Energy Source
1
作者 Chia-Nan Wang Thuy-Duong Thi Pham Nhat-Luong Nhieu 《Energy Engineering》 EI 2024年第8期2039-2064,共26页
Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources ... Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources are the ones going through the ring of fire.Therefore,not every country is lucky enough to own this resource.As a country with 117 active volcanoes and within the world’s ring of fire,it is a country whose geothermal resources are estimated to be about 40%of the world’s geothermal energy potential.However,the percentage used compared to the geothermal potential is too small.Therefore,this is the main energy source that Indonesia is aiming to exploit and use.However,the deployment and development of this energy source are still facing many obstacles due to many aspects from budget sources due to high capital costs,factory construction location,quality of resources,and conflicts of the local community.In this context,determining the optimal locations for geothermal energy sites(GES)is one of the most important and necessary issues.To strengthen the selection methods,this study applies a two-layer fuzzy multi-criteria decision-making method.Through the layers,the Ordinal Priority Approach(OPA)is proposed to weight the sub-criteria,the main criterion,and the sustainability factors.In layer 2,the Neutrosophic Fuzzy Axiomatic Design(NFAD)is applied to rank and evaluate potential locations for geothermal plant construction.Choosing the right geothermal energy site can bring low-cost efficiency,no greenhouse gas emissions,and quickly become the main energy source providing electricity for Indonesia.The final ranking shows Papua,Kawah Cibuni,and Moluccas as the three most suitable cities to build geothermal energy systems.Kawah Cibuni was identified as the most potential GES in Indonesia,with a score of 0.46.Papua is the second most promising GES with a score of 0.45.Next is the Moluccas,with a score of 0.39.However,the three least potential sites among the 15 studied sites are Lumut Balai,Moluccas and Patuha,with scores of 0.08,0.11 and 0.17,respectively.The conclusion of this study also classifies positions into groups to aid in decision-making. 展开更多
关键词 Ordinal priority approach neutrosophic fuzzy axiomatic design renewable energy multiple criteria decision making geothermal energy
下载PDF
An Integrated Framework for Geothermal Energy Storage with CO_(2)Sequestration and Utilization 被引量:2
2
作者 Yueliang Liu Ting Hu +7 位作者 Zhenhua Rui Zheng Zhang Kai Du Tao Yang Birol Dindoruk Erling Halfdan Stenby Farshid Torabi Andrey Afanasyev 《Engineering》 SCIE EI CAS CSCD 2023年第11期121-130,共10页
Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage d... Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage due to its superior thermal properties.Moreover,the use of CO_(2)plumes for geothermal energy storage mitigates the greenhouse effect by storing CO_(2)in geological bodies.In this work,an integrated framework is proposed for synergistic geothermal energy storage and CO_(2)sequestration and utilization.Within this framework,CO_(2)is first injected into geothermal layers for energy accumulation.The resultant high-energy CO_(2)is then introduced into a target oil reservoir for CO_(2)utilization and geothermal energy storage.As a result,CO_(2)is sequestrated in the geological oil reservoir body.The results show that,as high-energy CO_(2)is injected,the average temperature of the whole target reservoir is greatly increased.With the assistance of geothermal energy,the geological utilization efficiency of CO_(2)is higher,resulting in a 10.1%increase in oil displacement efficiency.According to a storage-potential assessment of the simulated CO_(2)site,110 years after the CO_(2)injection,the utilization efficiency of the geological body will be as high as 91.2%,and the final injection quantity of the CO_(2)in the site will be as high as 9.529×10^(8)t.After 1000 years sequestration,the supercritical phase dominates in CO_(2)sequestration,followed by the liquid phase and then the mineralized phase.In addition,CO_(2)sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil.More importantly,CO_(2)exhibits excellent performance in storing geothermal energy on a large scale;for example,the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5×10^(7) normal households.Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality. 展开更多
关键词 geothermal energy storage CO_(2)sequestration Carbon neutrality LARGE-SCALE CO_(2)utilization
下载PDF
Geothermal Energy--Network of Geoplutonic Power Plants
3
作者 Andrzej Pawula 《Journal of Environmental Science and Engineering(A)》 2023年第1期14-26,共13页
The article presents the concept of a network of geoplutonic power plants,the total capacity of which would correspond to the general energy needs of the entire region.A scenario of a regional economy is presented,pro... The article presents the concept of a network of geoplutonic power plants,the total capacity of which would correspond to the general energy needs of the entire region.A scenario of a regional economy is presented,provided with electricity produced from a clean source,without pollutant emissions.Thus,a vision of solving the energy crisis resulting from the planned elimination of fossil energy sources is presented.Such an opportunity appeared after solving the technological problems of deep drilling,exceeding 10 km.The new technology involves extracting heat from HDRs(Hot Dry Rocks)and heating the fluid circulating in a pipe in a closed circuit.The temperature at a depth of 10 km is determined by the regional geothermal gradient.Temperature is in the range of 200-400°C.This is already a zone of degassing magmatic solutions and exothermic chemical reactions.In general,it can be argued that the heat flux density is a function of the distance from magmatic intrusions. 展开更多
关键词 Plutonic energy geothermal energy renewable energy sources
下载PDF
Analysis on the law of occurrence of shallow geothermal energy in Zhoukou City of Henan Province, China 被引量:3
4
作者 XING Hui DI Yan-song YONG Yi 《Journal of Groundwater Science and Engineering》 2019年第3期282-287,共6页
In this paper,through data collection and field investigation,the development and utilization status of shallow geothermal energy in Zhoukou urban area was discussed.Based on the analysis of hydrogeological conditions... In this paper,through data collection and field investigation,the development and utilization status of shallow geothermal energy in Zhoukou urban area was discussed.Based on the analysis of hydrogeological conditions,rock and soil structure characteristics and field test research,the spatial distribution characteristics of rock and soil in the study area were summarized.The study shows that Zhoukou City is located in the alluvial plain of Huanghuai,and the loose deposits of river alluvial genesis range 0-200 m.These loose deposits and groundwater stored in their pores are the main carriers of shallow geothermal energy.In the central part of the Yinghe River in the middle of the study area,the aquifer thickness is within 200 m,the particle size is coarser,the water-bearing degree and recharge capacity is better.On this basis,the paper uses AHP to evaluate the suitability of shallow geothermal energy development and utilization to guide the rational development and utilization of shallow geothermal energy resources. 展开更多
关键词 Zhoukou CITY SHALLOW geothermal energy Thermal physical characteristics Water ABUNDANCE Ability of recirculation SHALLOW geothermal area
下载PDF
Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO_(2): The superiority and existing problems 被引量:6
5
作者 Guodong Cui Shaoran Ren +1 位作者 Bin Dou Fulong Ning 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期428-443,共16页
CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systema... CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended. 展开更多
关键词 Depleted high-temperature gas reservoir Heat transmission fluid geothermal energy exploitation CO_(2) Salt precipitation
下载PDF
Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy 被引量:2
6
作者 ZHU Xi ZHANG Qing-lian +1 位作者 WANG Wan-li LIU Yan-guang 《Journal of Groundwater Science and Engineering》 2015年第3期256-267,共12页
Thermophysical parameters are the main parameters affecting the utilization efficiency of shallow geothermal energy. Based on the research and evaluation data of shallow geothermal energy in capital cities of China, t... Thermophysical parameters are the main parameters affecting the utilization efficiency of shallow geothermal energy. Based on the research and evaluation data of shallow geothermal energy in capital cities of China, this paper analyzes the differences between two testing methods and finds that data measured in in-situ thermal conductivity test is closer to the actual utilization. This paper analyzes the influencing factors of thermophysical parameters from lithology, density, moisture content and porosity: The thermal conductivity coefficient of bedrock is generally higher than Quaternary system loose bed soil; as for the coefficient of bedrock, dolomite, shale and granite are higher while gabbro, sandstone and mudstone are lower; as for the coefficient of loose bed, pebble and gravel are higher while clay and silt are lower. As the particle size of sand decreases, the thermal conductivity coefficient declines accordingly. The thermal conductivity coefficient increases linearly with growing density and decreases in logarithm with growing moisture content as well as porosity; specific heat capacity decreases in logarithm with growing density, increases in power exponent with growing moisture content and decreases linearly with growing porosity. The thermal conductivity coefficient is high when hydrodynamic condition is good and vice versa. The conclusions of this paper have guiding significance for the research, evaluation and development of shallow geothermal energy in other areas. 展开更多
关键词 Shallow geothermal energy Thermophysical property Influencing factor Distribution rule
下载PDF
Prospect of HDR geothermal energy exploitation in Yangbajing,Tibet,China,and experimental investigation of granite under high temperature and high pressure 被引量:1
7
作者 Yangsheng Zhao Zijun Feng +3 位作者 Baoping Xi Jinchang Zhao Zhijun Wan Anchao Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期260-269,共10页
Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other... Hot dry rock (HDR) geothermal energy, almost inexhaustible green energy, was first put forward in the 1970s. The development and testing of HDR geothermal energy are well reported in USA, Japan, UK, France and other countries or regions. In this paper, the geological characters of Yangbajing basin were first analyzed, including the continental dynamic environments to form HDR geothermal fields in Tibet, the tectonic characteristics of south slope of Nyainqentanglha and Dangxiong-Yangbajing basin, and the in-situ stresses based on the investigations conducted, and then the site-specific mining scheme of HDR geothermal resources was proposed. For the potential development of HDR geothermal energy, a series of experiments were conducted on large-scale granite samples, 200 mm in diameter and 400 mm in length, at high temperature and high triaxial pressure for cutting fragmentation and borehole stability. For the borehole stability test, a hole of 40 mm in diameter and 400 mm in length was aforehand drilled in the prepared intact granite sample. The results indicate that the cutting velocity obviously increases with temperature when bit pressure is over a certain value, while the unit rock-breaking energy consumption decreases and the rock-breaking efficiency increases with temperature at the triaxial pressure of 100 MPa. The critical temperature and pressure that can result in intensive damage to granite are 400-500℃ and 100-125 MPa, respectively. 展开更多
关键词 hot dry rock (HDR) geothermal energy exploitation high temperature and high pressure cutting fragmentation borehole stability
下载PDF
Distribution,exploitation,and utilization of intermediate-to-deep geothermal resources in eastern China
8
作者 Zhiliang He Jianyun Feng +1 位作者 Jun Luo Yan Zeng 《Energy Geoscience》 2023年第4期25-45,共21页
The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses... The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism. 展开更多
关键词 Intermediate-to-deep geothermal resources Distribution pattern geothermal system Direct utilization of geothermal energy Mesozoicecenozoic sedimentary basin Eastern China
下载PDF
Granite thermal reservoirs in Lingshui area of Hainan Island and their significance to geothermal resources,China
9
作者 Xiaorui Yun Ying Zhang +2 位作者 Dingyong Liang Yanming Qu Haifeng Chen 《Energy Geoscience》 2023年第4期159-170,共12页
Hainan Island located at the southernmost tip of the continental crust of the South China Plate,has high terrestrial heat-flow values,widely-distributed hot springs,and rich geothermal resources.Intensified researches... Hainan Island located at the southernmost tip of the continental crust of the South China Plate,has high terrestrial heat-flow values,widely-distributed hot springs,and rich geothermal resources.Intensified researches on the origin and potentials of geothermal resources can promote Hainan Island's development into a clean energy island.To determine the geological conditions for the formation of geothermal resources in southern Hainan Island,we collected core samples of granites from the Baocheng batholith in southern Hainan Island and conducted systematic analysis in respect of petrology,geochronology,geochemistry,and petrophysical property.The results of this study are as follows.The Baocheng batholith in the southern Hainan Island has a crystallization age of 98.42±0.56 Ma,making it the product of magmatism in the early stage of the Late Cretaceous.It mainly consists of high-K calc-alkaline granites,which were intruded by intermediate-to-mafic veins.The Baocheng batholith has a high radioactive heat generation rate of 2.712-6.843μW/m^(3),with an average of 3.846μW/m^(3),a radioactive heat-flow value of 30.768 μW/m^(2)and a heat-flow contribution rate of 38.95%-43.95%.As shown by the results of their thermophysical property analysis,the granites have high thermal conductivity and can serve as highquality geothermal reservoirs.In combination with previous geological and geophysical data,the geothermal model of the Lingshui area was established in this study.The deep structure indicates the presence of high-conductivity and low-resistivity layers in the basement of the Baocheng batholith.It can be inferred thereby that asthenospheric upwelling may occur and that there exist two magma vents at depth in the batholith.Therefore,magmatic heat at depth and granites with high radioactive heat generation rate serve as the main heat sources in the Lingshui area. 展开更多
关键词 Hainan Island geothermal energy Baocheng batholith GRANITE Radioactive heat flow Thermal conductivity
下载PDF
Energy Efficient Air Conditioning System Using Geothermal Cooling-Solar Heating in Gujarat, India 被引量:1
10
作者 Sneha Shahare T. Harinarayana 《Journal of Power and Energy Engineering》 2016年第1期57-71,共15页
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t... It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger. 展开更多
关键词 energy Efficiency geothermal Cooling Air Conditioning CFD Thermal Comfort Earth Water Heat Exchanger
下载PDF
Seasonal Behavior of Pavement in Geothermal Snow-Melting System with Solar Energy Storage 被引量:3
11
作者 赵军 王华军 +1 位作者 陈志豪 曲航 《Transactions of Tianjin University》 EI CAS 2006年第5期319-324,共6页
A two-dimensional unsteady heat transfer model of pavement of geothermal road snow-melting system (GRSS) with solar energy storage is established and numerical simulation is carried out based on annual hourly meteorol... A two-dimensional unsteady heat transfer model of pavement of geothermal road snow-melting system (GRSS) with solar energy storage is established and numerical simulation is carried out based on annual hourly meteorological data and boundary conditions. Simulated results show that ground surface temperature and heating flux decrease with the increase of buried depth, but increase with the increase of fluid temperature in winter. Heat-extracted amount and efficiency drop with the increase of fluid temperature in summer.Compared with ambient temperature, solar radiation has more direct influence on the heat-extracted flux of pipe walls of GRSS in summer. The relationships among maximum and idling snow-melting load, the rate of snowfall, ambient temperature and wind speed are made clear, which provides necessary references for the design and optimization of a practical road snow-melting system. 展开更多
关键词 地热能 融雪系统 传热 季节性 储热
下载PDF
A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation
12
作者 Hao Qi Mohamed Sharaf +2 位作者 Andres Annuk Adrian Ilinca Mohamed A.Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1387-1404,共18页
Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte... Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system. 展开更多
关键词 energy harvesting integrated energy systems optimum scheduling time-of-use pricing demand response geothermal energy
下载PDF
Wellhead anti-frost technology using deep mine geothermal energy 被引量:1
13
作者 Guo Pingye He Manchao +1 位作者 Yang Qin Chen Chen 《Mining Science and Technology》 EI CAS 2011年第4期525-530,共6页
The auxiliary shaft is an important location for coal mine heating in the winter,where the main purpose of heating is to prevent icing of the shaft.Wellhead heating requires characteristics of openness,no-noise and bi... The auxiliary shaft is an important location for coal mine heating in the winter,where the main purpose of heating is to prevent icing of the shaft.Wellhead heating requires characteristics of openness,no-noise and big heat loads.The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange.Therefore,to solve these problems,we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system.Through numerical calculations we will simulate temperature fields,pressure fields and velocity fields under different air supply temperatures,as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to and the proper layout and number of radiators that meet wellhead anti-frost requirements from our simulation results,in order to provide guidelines for a practical engineering design.Tests on the Zhangshuanglou auxiliary shaft wellhead shows good,look promising and appear to resolve successfully the problem of high energy consumption and high pollution of wellhead heating by a coal-fired boiler. 展开更多
关键词 能源使用 井口房 地热能 霜冻 深部 矿井 技术 锅炉加热
下载PDF
Renewable Energy: Prospects and Challenges in Bangladesh
14
作者 Abul Fattah Mohammad Masum Rabbani Md. Masudur Rahman Rahat +1 位作者 Ahsan Habib Md. Nazrul Islam 《Energy and Power Engineering》 2024年第2期43-78,共36页
Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewabl... Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewable energy sources currently reduce GHG that are being emitted from the energy industries. According to the majority of long-term energy estimates, renewable energy will be a substantial addition to the supply of energy worldwide by the end of this century, as capacity of renewable energy is gradually increasing in the early decades. However, developing nations like Bangladesh are largely reliant on pricey imported energy supplies (coal, gas, and oil) that lay a heavy weight on the country’s economy. Also, air pollution growing in importance as a national and international environmental issue. Regarding the development of clean and sustainable energy, renewable energy sources seem to be among the most practical and efficient alternatives, in both Bangladesh and globally. The geographic advantages of Bangladesh allow for widespread usage of the majority of such renewable energy sources. The comparative potential and use of fossil fuels against renewable energy sources globally and in Bangladesh is explored in this review. 展开更多
关键词 Renewable energy Solar and Photovoltaics HYDROPOWER Wind energy geothermal
下载PDF
Application of Geothermal Energy to New Countryside Construction——A Case Study of Xiong County, Hebei Province
15
作者 WANG Shu-fang 《Meteorological and Environmental Research》 CAS 2012年第11期61-64,共4页
Hujiatai Village, Xiong County, Hebei Province was nominated as the experimental unit of new countryside construction by Hebei Province in 2008. In order to make Hujiatai Village become a new countryside model with fr... Hujiatai Village, Xiong County, Hebei Province was nominated as the experimental unit of new countryside construction by Hebei Province in 2008. In order to make Hujiatai Village become a new countryside model with friendly ecological and environmental conditions, local energy resources should be considered. In this study, a mode of 'geothermal energy extraction-heat exchange-space heating-reinjection' was adopted to supply heat to resident houses in Hujiatai Village cooperating with a geothermal development entity based on the abundant geothermal resources, thereby constructing a clean, economic and autarkic new countryside energy system, which avoids utilization of fossil-energy, reduces emission of greenhouse gases and generation of solid coal cinder, protecting air and land environment, improving life quality of the people and building a typical model for Hebei Province and even for the whole country. 展开更多
关键词 geothermal energy geothermal space heating Saving energy and reducing greenhouse gases emissions New countryside construction China
下载PDF
Organic Rankine Cycle Based Geothermal Energy for Power Generation in Egypt
16
作者 Doaa M. Atia Hanaa M. Farghally +1 位作者 Ninet M. Ahmed Hanaa T. El-Madany 《Energy and Power Engineering》 2017年第12期814-828,共15页
Low temperature geothermal resources are located in many areas and represent a high potential energy resource. One of the most common technologies, efficient and to exploit this type of resource is the binary cycle te... Low temperature geothermal resources are located in many areas and represent a high potential energy resource. One of the most common technologies, efficient and to exploit this type of resource is the binary cycle technology. Organic Rankine Cycle (ORC) is one of the main types of binary cycles. Electricity generation from low enthalpy geothermal energy using ORC is a talented technology. This paper addresses the design of binary cycle power plant utilizing one of the low temperature geothermal resource of temperature 92°C using four alternative working fluids: Butane, Isobutane, Pentane and 1,1,1,3,3-Pentafluoropropan (R245fa). Bir Nabi is the well under consideration which located in the Eastern desert, Egypt. Three operation parameters: geothermal temperature, reinjection temperature and geothermal flow rate are taken into consideration to analyze the performance of the power plant for different fluids. A performance analysis is conducted on ORC binary power plant using MATLAB programming to study the variation of output power and efficiency with the operation parameters. Also, the effect of these parameters on the area of ORC binary cycle power plant components;preheater, evaporator and condenser is presented. The geothermal resources temperatures are in the range of 90°C to130°C, the mass flow rate of the geothermal fluid ranges between 10 kg/s and 50 kg/s and reinjection temperature ranges from 30°C to 70°C. The results indicate that, the highest output power and plant efficiency are obtained with Pentane. 展开更多
关键词 geothermal energy Working FLUID ORGANIC Rankine CYCLE BINARY Power Plant
下载PDF
Relative importance of different physical processes on upper crustal specific heat flow in the Eifel-Maas region, Central Europe and ramifications for the production of geothermal energy
17
作者 Lydia Dijkshoorn Christoph Clauser 《Natural Science》 2013年第2期268-281,共14页
We study the recent upper crustal heat flow variations caused by long-term physical processes such as paleoclimate, erosion, sedimentation and mantle plume upwelling. As specific heat flow is a common lower boundary c... We study the recent upper crustal heat flow variations caused by long-term physical processes such as paleoclimate, erosion, sedimentation and mantle plume upwelling. As specific heat flow is a common lower boundary condition in many models of heat en fluid flow in the Earth’s crust we quantify its long-term transient variation caused by paleoclimate, erosion or sedimentation, mantle plume upwelling and deep groundwater flow. The studied area extends between the Eifel mountains and the Maas river inCentral Europe. The total variation due to these processes in our study area amounts to tectonic events manifested in the studied area 20 mW/m2, about 30% of the present day specific heat flow in the region. 展开更多
关键词 CRUSTAL Heat Flow Physical Process Modeling EIFEL geothermal energy HYDROTHERMAL System
下载PDF
Security Regulations in Mexican Renewable Energies: Case of Geothermal Projects
18
作者 Alfonso Aragón-Aguilar Georgina Izquierdo-Montalvo Víctor Arellano-Gómez 《Smart Grid and Renewable Energy》 2013年第6期21-31,共11页
A review of natural resources existing in México is done. The description of the renewable energies for electricity generation operating at date along the country, includes hydro, wind, solar, biomass and geother... A review of natural resources existing in México is done. The description of the renewable energies for electricity generation operating at date along the country, includes hydro, wind, solar, biomass and geothermal, among others. The installed capacity (to 2012) in México for electric generation from renewable energies is equivalent to 22% of total generation capacity. México has geothermal resources, which can be classified as high and low enthalpy, and of hot dry rock. To date, the exploitation has focused mainly on high enthalpy geothermal fields. Geothermal power plants do not burn fuel, preventing gas emissions helping to reduce global warming and greenhouse effect. Security risks in México geothermal fields, as a part of renewable energies linked to Smart Grids, are described emphasizing their geographical locations to facilitate the exposure to dangerous events. The results about research on Mexican Official Norms protecting environment related with geothermal operation projects are shown. The Mexican geothermal projects have developed under rules that provide security to workers and people, avoiding impacts on the environment. However, it was found that it necessarily emphasized previsions to damages and remedial actions for grids due to risks by natural contingencies (cyclones, winds, earthquakes) and by artificial causes such as vandalism (grids breaking, fire, explosions, etc.). Unfortunately, there are no preventive norms against natural risks. After all the analyses carried out, security must be considered by nature a dynamic and ever-changing process. 展开更多
关键词 SECURITY RENEWABLE energy geothermal Hydro Wind Solar Environment OFFICIAL MEXICAN Norms geothermal Fields
下载PDF
Geothermal Energy Production Potential from Oil and Gas Fields in Western Ukraine
19
作者 Oleksandr Burachok Oleksandr Kondrat 《Journal of Geological Resource and Engineering》 2019年第4期123-131,共9页
Western Ukraine as well as Crimea Peninsula is well known for their geothermal potential.The classic low enthalpy geothermal project is based on the construction of a binary power plant,and includes recycling of water... Western Ukraine as well as Crimea Peninsula is well known for their geothermal potential.The classic low enthalpy geothermal project is based on the construction of a binary power plant,and includes recycling of water through one or several doublets of wells;produced hot water is directed to a heat exchanger(vaporizer),in which a secondary(working)fluid with low boiling point and high vapor pressure vaporizes and rotates a turbine to produce electricity.The highest risk for the project is associated with drilling new wells,which may not hit the target or not have the required productivity.Western Ukraine is one of the oldest oil and gas production regions in Europe.The majority of the fields are on a late stage of the development that is characterized with high produced volumes of water that after separation is being reinjected back for pressure support.In this study,we evaluated the possibility of geothermal energy production,extracted from water that is produced together with oil and gas,based on numerical reservoir simulation models for a typical reservoir setting. 展开更多
关键词 WESTERN Ukraine geothermal energy energy PRODUCTION POTENTIAL sensitivity analysis RESERVOIR simulation
下载PDF
Evaluation of shallow geothermal energy resources in the Beijing-Tianjin- Hebei Plain based on land use
20
作者 Ruo-xi Yuan Gui-ling Wang +3 位作者 Feng Liu Wei Zhang Wan-li Wang Sheng-wei Cao 《Journal of Groundwater Science and Engineering》 2021年第2期129-139,共11页
To discover the characteristics,distribution and potential of shallow geothermal energy in the Beijing-Tianjin-Hebei Plain area.This paper,based on a large amount of data collection and field investigations,evaluateed... To discover the characteristics,distribution and potential of shallow geothermal energy in the Beijing-Tianjin-Hebei Plain area.This paper,based on a large amount of data collection and field investigations,evaluateed the shallow-layer geothermal energy in the study area through the analytic hierarchy process and comprehensive index method.Based on suitability zoning results superimposed with 1:100000 land use data,the study area is divided into encouraged,controlled,restricted and prospective mining areas regarding the development of shallow geothermal energy,and the economic availability of shallow geothermal energy in the encouraged and controlled areas are evaluated.The results show that the shallow geothermal energy in the Beijing-Tianjin-Hebei Plain can meet the heating and cooling demand of 6×10^(8) m2 of buildings,equivalent to 1.15×10^(7) t of standard coal,thus reducing carbon dioxide emissions by 2.73×10^(7) t and reducing sulfur dioxide emissions by 1.95×10^(5) t.According to the development and utilization mode,the energy demand level and the Beijing-Tianjin-Hebei coordinated development plan,the development and utilization of geothermal resources in the plain area has two types:Urban concentrated mining areas and rural scattered mining areas.The scale and level of intensive utilization of regional geothermal resources are of great significance. 展开更多
关键词 Beijing-tianjin-hebei plain Shallow geothermal energy resources Land use Suitability evaluation
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部