在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了...在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。展开更多
准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使...准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使结构面识别准确性差、效率低。针对该问题,以江西省南昌市某露天矿高边坡为研究背景,提出了融合无人机摄影、后处理算法及统计分析的一体化结构面识别与产状统计信息采集方法。首先,通过Phantom 4 Pro V2.0无人机获取边坡表面影像;其次,利用Context Capture软件进行处理,得到高密度三维点云数据;然后,采用K近邻(KNN)算法中的确定近邻点数量法构建相似点集,采用基于密度的聚类(DBSCAN)算法进行聚类分析,从而实现边坡结构面识别,获得结构面产状信息并进行统计特征分析;最后,通过现场勘测数据进行对比验证。结果表明:该方法能够快速获取完整的高密度点云数据,准确高效地识别岩质高边坡大部分结构面,识别结果与边坡工程现场实际情况基本吻合;该方法可获取高边坡结构面数量、产状信息及其统计特征,大部分结构面倾角和倾向概率分布与实测数据拟合较好,为高边坡裂隙网络模型构建及稳定性分析提供了重要数据来源。展开更多
文摘在处理雷达信号时,基于密度的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)分选算法依赖于参数或阈值的选取,影响分选的准确率。为此提出了一种改进的雷达信号脉冲分选算法,在DBSCAN聚类基础上结合了K中位最近邻(K-median nearest neighbor,KMNN)算法,通过引入自衰减系数并设置阈值上限对参数值列表进行二次处理,可以自适应根据聚类结果与不同参数时的K值之间的关系确定最优的邻域半径和最少点个数,提高了分选的正确率。通过仿真实验验证了算法利用雷达脉冲描述字特征进行自适应分选的有效性。
文摘准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使结构面识别准确性差、效率低。针对该问题,以江西省南昌市某露天矿高边坡为研究背景,提出了融合无人机摄影、后处理算法及统计分析的一体化结构面识别与产状统计信息采集方法。首先,通过Phantom 4 Pro V2.0无人机获取边坡表面影像;其次,利用Context Capture软件进行处理,得到高密度三维点云数据;然后,采用K近邻(KNN)算法中的确定近邻点数量法构建相似点集,采用基于密度的聚类(DBSCAN)算法进行聚类分析,从而实现边坡结构面识别,获得结构面产状信息并进行统计特征分析;最后,通过现场勘测数据进行对比验证。结果表明:该方法能够快速获取完整的高密度点云数据,准确高效地识别岩质高边坡大部分结构面,识别结果与边坡工程现场实际情况基本吻合;该方法可获取高边坡结构面数量、产状信息及其统计特征,大部分结构面倾角和倾向概率分布与实测数据拟合较好,为高边坡裂隙网络模型构建及稳定性分析提供了重要数据来源。