期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
Damage detection of 3D structures using nearest neighbor search method 被引量:1
1
作者 Ali Abasi Vahid Harsij Ahmad Soraghi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期705-725,共21页
An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and ... An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and place of damage in 3D spaces since it includes the most dynamic characteristics of the structures.Two-dimensional principal component analysis was utilized to reduce the size of the frequency response function data.The nearest neighbor search method was employed to detect the severity and location of damage in different damage scenarios.The accuracy of the approach was verified using measured data from an experimental test;moreover,two asymmetric 3D numerical examples were considered as the numerical study.The superiority of the method was demonstrated through comparison with the results of damage identification by using artificial neural network.Different levels of white Gaussian noise were used for polluting the frequency response function data to investigate the robustness of the methods against noise-polluted data.The results indicate that both methods can efficiently detect the damage properties including its severity and location with high accuracy in the absence of noise,but the nearest neighbor search method is more robust against noisy data than the artificial neural network. 展开更多
关键词 damage identification damage index frequency response function two-dimensional principal component analysis nearest neighbor search artificial neural network white Gaussian noise
下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:1
2
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
3
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
4
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
下载PDF
An Adaptive Steganographic Algorithm for Point Geometry Based on Nearest Neighbors Search
5
作者 Yuan-Yu Tsai Chi-Shiang Chan 《Journal of Electronic Science and Technology》 CAS 2012年第3期220-226,共7页
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p... In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation. 展开更多
关键词 ADAPTATION nearest neighbors search point geometry steganography.
下载PDF
基于时域波形特征认知的输电线路近端故障辨识与定位 被引量:2
6
作者 张广斌 陈柏宇 +1 位作者 束洪春 司大军 《电力系统自动化》 EI CSCD 北大核心 2024年第5期146-156,共11页
针对现有单端行波故障测距对近端故障存在测距盲区、双端行波故障测距对近端故障测距误差较大,无法满足工程需要的不足,提出基于波形特征认知的近端故障辨识与定位方法。首先,分析了线路故障行波传播规律,以固定分辨率显示波形。发现线... 针对现有单端行波故障测距对近端故障存在测距盲区、双端行波故障测距对近端故障测距误差较大,无法满足工程需要的不足,提出基于波形特征认知的近端故障辨识与定位方法。首先,分析了线路故障行波传播规律,以固定分辨率显示波形。发现线路近端故障时,初始行波及其后续波形在长时窗整体宏观观测下呈堆叠缓变特征,而在短时窗局部放大观测下呈周期性变化特征,且周期与故障距离相关。不同线路的近端故障历史样本能统一作为参照基准为测距提供提示。进而提出基于波形密度和突变分布的近端故障辨识方法。最后,对辨识出的近端故障进行周期估计,利用近端故障与线长的无关性以及历史样本突变周期和故障位置已知性,搜索周期最近邻历史样本,并由已知故障距离插值实现故障位置确定。基于大量实测数据进行仿真测试,结果表明所提方法能够显著提升单端行波测距可靠性和成功率。 展开更多
关键词 故障测距 近端故障 行波 突变周期 近邻搜索 像素密度分布
下载PDF
求解带容量约束车辆路径问题的改进遗传算法 被引量:1
7
作者 徐伟华 邱龙龙 +1 位作者 张根瑞 魏传祥 《计算机工程与设计》 北大核心 2024年第3期785-792,共8页
为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算... 为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算子,缩小基因变异范围,使用单点局部插入算子提高算法的局部优化能力。采用精英选择和轮盘赌法结合的选择策略,保持种群多样性以加强算法的全局搜索能力。实例计算测试表明,与传统遗传算法相比,所提算法求解平均偏差降低了70.25%,求解时间减少了87.41%;与ALNS和AGGWOA算法相比,有更高的求解质量和更好的稳定性。 展开更多
关键词 遗传算法 车辆路径问题 贪婪策略 交叉算子 最近邻搜索 局部优化 精英选择
下载PDF
基于容忍因子的近似最近邻混合查询算法 被引量:1
8
作者 贺广福 薛源海 +3 位作者 陈翠婷 俞晓明 刘欣然 程学旗 《大数据》 2024年第1期17-34,共18页
近似最近邻搜索(ANNS)是计算机领域中一种重要的高效相似度搜索技术,可用于在大规模数据集中进行快速信息检索。随着人们对高精度信息检索的需求不断增长,同时使用结构化信息和非结构化信息进行混合查询的方式也得到了广泛应用。然而,... 近似最近邻搜索(ANNS)是计算机领域中一种重要的高效相似度搜索技术,可用于在大规模数据集中进行快速信息检索。随着人们对高精度信息检索的需求不断增长,同时使用结构化信息和非结构化信息进行混合查询的方式也得到了广泛应用。然而,基于近邻图的过滤贪心算法在混合查询时可能会因结构化约束条件的影响导致连通性降低,进而损害搜索精度。为此,提出了一种基于容忍因子的过滤贪心算法,通过容忍因子控制不满足结构化约束条件的顶点参与路由,在不改变索引结构的前提下维持原有近邻图的连通性,克服了结构化约束条件对检索精度的负面影响。实验结果证明,新算法可以在不同结构化约束强度下实现ANNS的高精度搜索,同时保持检索效率。该研究解决了基于近邻图的ANNS在混合查询场景中的问题,为大规模数据集的快速混合查询信息检索提供了一种有效的解决方案。 展开更多
关键词 混合查询 向量检索 最近邻搜索 过滤搜索
下载PDF
支持K-近邻搜索的区块链泛用型数据隐私保护方法
9
作者 王胜 潘正高 董全德 《辽宁大学学报(自然科学版)》 CAS 2024年第2期147-157,共11页
随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了... 随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了支持K-近邻搜索的区块链泛用型数据隐私保护方法,采集区块链泛用型数据,利用k-prototypes算法,聚类区块链泛用型数据,并控制分类属性和数值属性.在此基础上,本文支持K-近邻搜索,建立区块链泛用型数据系统模型,确定区块链泛用型数据敏感区域,实现区块链泛用型数据隐私保护.实验结果表明,本文所提方法具有较好的区块链泛用型数据隐私保护效果,能够有效提高区块链泛用型数据隐私保护安全性,缩短区块链泛用型数据隐私保护时间. 展开更多
关键词 K-近邻搜索 区块链 泛用型数据 k-prototypes算法 数据隐私保护
下载PDF
基于分区层次图的海量高维数据学习索引构建方法
10
作者 华悦琳 周晓磊 +2 位作者 范强 王芳潇 严浩 《计算机工程与科学》 CSCD 北大核心 2024年第7期1193-1201,共9页
学习索引是破解海量高维数据近似最近邻搜索问题的关键。然而,现有学习索引技术结果仅局限于单个分区中,且依赖于近邻图的构建。随着数据维度和规模的增长,索引难以对分区边界数据进行精确判断,并且构建时间复杂度增大,可扩展性难以保... 学习索引是破解海量高维数据近似最近邻搜索问题的关键。然而,现有学习索引技术结果仅局限于单个分区中,且依赖于近邻图的构建。随着数据维度和规模的增长,索引难以对分区边界数据进行精确判断,并且构建时间复杂度增大,可扩展性难以保障。针对上述问题,提出了基于分区层次图的学习索引方法PBO-HNSW。该方法对分区边界数据进行重新分配,并行构建分布式图索引结构,从而有效应对近似最近邻搜索问题所面临的挑战。实验结果表明,该方法能够在百万级海量高维数据上实现毫秒级的索引构建。当召回率为0.93时,PBO-HNSW方法构建时间仅为基线方法的36.4%。 展开更多
关键词 近似最近邻搜索 学习索引 层次可导航小世界图 分区学习 索引结构
下载PDF
基于视觉理论的动态点云剔除算法
11
作者 陈跃龙 许仁波 +2 位作者 董杰 蒋林 周和文 《农业装备与车辆工程》 2024年第9期102-107,115,共7页
针对动态场景下构建的点云地图中包含大量动态目标的错误点云问题,提出一种基于视觉理论将三维点云转换视觉图像的动态点云剔除算法。通过对当前帧和包含动态点云的噪声地图做点云的地面分割和高度分割,将点云的深度信息转换成视觉可用... 针对动态场景下构建的点云地图中包含大量动态目标的错误点云问题,提出一种基于视觉理论将三维点云转换视觉图像的动态点云剔除算法。通过对当前帧和包含动态点云的噪声地图做点云的地面分割和高度分割,将点云的深度信息转换成视觉可用的图像信息,利用视觉理论中的背景差分法对当前帧和噪声地图进行深度图像对比,筛选出初始动态点云并计算动态分数;根据动态分数对初始动态点云进行自适应最近邻搜索以剔除动态目标。实验结果表明,所提算法的动态点云剔除率可达94%以上,整体得分为96.34,能有效剔除场景中的动态目标。 展开更多
关键词 视觉理论 动态点云剔除 深度图像 背景差分法 自适应最近邻搜索
下载PDF
基于均衡聚类索引的近似最近邻检索方法
12
作者 吕宏伟 李博 +3 位作者 刘普凡 刘识 李继伟 刘俊健 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第2期99-108,共10页
大数据时代,深度学习通过将复杂对象表示为高维特征向量,并使用向量之间的距离度量来衡量样本的相似性,在推荐系统、用户画像、数据中台管理等场景中得到了广泛的应用.但是,随着数据规模的不断增加,海量特征数据的相似向量检索面临着检... 大数据时代,深度学习通过将复杂对象表示为高维特征向量,并使用向量之间的距离度量来衡量样本的相似性,在推荐系统、用户画像、数据中台管理等场景中得到了广泛的应用.但是,随着数据规模的不断增加,海量特征数据的相似向量检索面临着检索模型占用内容大、特征检索算法召回率较低的严重挑战.如何在保证检索精度的前提下,设计紧凑型索引图结构,降低特征检索的内存消耗,对于提升大数据系统的近邻检索效率具有重要的作用.因此,本文提出了一种均衡感知的快速K均值近邻聚类的特征数据分桶及其图结构紧凑型索引用于海量数据近邻检索.首先,设计了均衡感知的快速K-均值聚类算法,通过在图索引构建过程中海量特征数据的均衡分桶,将高维向量压缩成轻量级紧凑型图索引结构,随后通过量化操作进一步压缩高维向量样本,提升其在候选集上的最近邻检索速度.在基准数据集上实验验证结果表明,本文提出的方法能够在保证较高检测召回率的同时,有效加快索引构建速度,可以用于支持高维特征数据的高效最近邻检索. 展开更多
关键词 大数据检索与分析 最近邻搜索 均衡感知
下载PDF
基于字典分级和属性加权的密文排序检索方案
13
作者 王娟 努尔买买提·黑力力 《新疆大学学报(自然科学版中英文)》 CAS 2024年第2期246-256,共11页
可搜索加密支持用户在不解密原始数据的前提下对加密数据执行检索操作.现有的多关键词排序可搜索加密方案,其索引和陷门构建的时间成本通常依赖于由全局关键词字典张成的向量空间.为了减少用户端的计算开销和通信成本,进一步提升数据使... 可搜索加密支持用户在不解密原始数据的前提下对加密数据执行检索操作.现有的多关键词排序可搜索加密方案,其索引和陷门构建的时间成本通常依赖于由全局关键词字典张成的向量空间.为了减少用户端的计算开销和通信成本,进一步提升数据使用者对检索结果的满意度,提出了一种支持细粒度访问控制的多关键词密文排序检索方案.该方案首先设计基于互信息的字典剥离机制差异化全局字典中的关键词,得到两个信息量不同的附属子字典,进一步在低维子字典空间上生成索引和陷门;其次,引入文档访问策略中属性的权重,将其作为排序标准之一,使数据使用者获得更为相关的结果;最后,检索时利用筛选向量对数据进行初次过滤并借助属性匹配完成二次剔除,从而避免检索过程中不必要的计算. 展开更多
关键词 可搜索加密 多关键词排序检索 安全K-近邻算法 字典分级 属性加权
下载PDF
一种改进的局部均值伪近邻算法
14
作者 李毅 张德生 张晓 《计算机工程与应用》 CSCD 北大核心 2024年第5期88-94,共7页
针对基于局部均值的伪近邻分类算法(LMPNN)易受近邻参数k和噪声点影响的问题,提出了一种改进的局部均值伪近邻分类算法(IPLMPNN)。利用双层搜索规则确定待测样本的最近邻,提高近邻集的选择质量;为了克服主观赋权法的不利影响,并且加强... 针对基于局部均值的伪近邻分类算法(LMPNN)易受近邻参数k和噪声点影响的问题,提出了一种改进的局部均值伪近邻分类算法(IPLMPNN)。利用双层搜索规则确定待测样本的最近邻,提高近邻集的选择质量;为了克服主观赋权法的不利影响,并且加强每个局部均值向量对分类的作用,引入注意力机制计算距离加权系数;使用改进的调和平均距离计算待测样本与局部均值向量之间的加权多调和平均距离,由此查找伪近邻点对待测样本进行分类。利用UCI和KEEL中的多个数据集对IPLMPNN算法进行仿真实验,并与8种相关算法进行比较。实验结果表明,IPLMPNN算法取得了令人满意的分类结果。 展开更多
关键词 局部均值的伪近邻分类算法(LMPNN) 双层搜索 注意力机制 多调和平均距离
下载PDF
具有混合策略的樽海鞘群特征选择算法
15
作者 余紫康 董红斌 《智能系统学报》 CSCD 北大核心 2024年第3期757-765,共9页
近年来,随着计算机和数据库技术的快速发展,大规模数据集迅速增长,利用特征选择技术来筛选信息量大的特征已经变得非常重要。本文提出了一种具有混合策略的樽海鞘群特征选择算法(salp swarm feature selection algorithm with hybrid st... 近年来,随着计算机和数据库技术的快速发展,大规模数据集迅速增长,利用特征选择技术来筛选信息量大的特征已经变得非常重要。本文提出了一种具有混合策略的樽海鞘群特征选择算法(salp swarm feature selection algorithm with hybrid strategy,HS-SSA)。首先,本文生成一张基于互信息的排序表,并由排序表提出了新的初始化策略。其次,提出一个新颖的并且有条件调用的动态搜索算法。最后在位置更新上结合瞬态搜索算法(transient search algorithm,TSO),改进勘探和开发步骤的效率,增加解空间的灵活性和多样性,从而使算法能够快速定位到全局最优位置。为了验证算法的性能,实验选取14个UCI的数据集,并且与樽海鞘群算法(SSA)以及近几年樽海鞘群的改进算法等多种优化算法进行比较,结果表明HS-SSA在特征选择上具有更强的竞争力。 展开更多
关键词 特征选择 樽海鞘群算法 瞬态搜索算法 启发式算法 互信息 动态搜索算法 秩和检验 K近邻
下载PDF
基于投票加权GS-KNN的离心风机故障诊断
16
作者 曾学文 陈高超 +2 位作者 付名江 邵峰 伍仁杰 《节能》 2024年第1期47-50,共4页
风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障... 风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断。使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%。 展开更多
关键词 故障诊断 火力发电 网格搜索 K近邻算法 投票加权
下载PDF
淮安市公园绿地空间分布及其可达性分析
17
作者 郭嘉 俞蕴馨 《江苏林业科技》 2024年第4期48-52,共5页
利用高德地图公开的公园兴趣点数据、天地图在线影像以及淮安市第七次人口普查数据,使用平均最近邻指数、标准差椭圆分析法、地理集中指数和网格化的高斯两步移动搜索法等多种方法研究淮安市绿地空间的分布、变化趋势,并对可达性进行评... 利用高德地图公开的公园兴趣点数据、天地图在线影像以及淮安市第七次人口普查数据,使用平均最近邻指数、标准差椭圆分析法、地理集中指数和网格化的高斯两步移动搜索法等多种方法研究淮安市绿地空间的分布、变化趋势,并对可达性进行评价。通过卫星影像解译提取研究区绿地面积,发现淮安市绿地数量上以小型点状绿地为主、面积上呈现以大型点状绿地占主导的分布格局;研究区绿地呈聚集态势;绿地呈现东北-西南方向的分布;各区的绿地分布不平衡,呈现集中特征;可达性是以公园绿地为中心,具有明显的“圈层式”分布特征,高值区出现在中间区域,即主城区,可达性范围在0—1303.56之间,仍有较高水平。认为淮安市绿地分布呈现明显的聚集特征,分布不均衡,且具有较高的可达性。 展开更多
关键词 绿地空间可达性 平均最近邻指数 地理集中指数 网格化 高斯两步移动搜索法 淮安市
下载PDF
基于SIFT算法的电动车充电孔双目视觉识别技术 被引量:2
18
作者 于明 李雪薇 《化工自动化及仪表》 CAS 2023年第3期316-322,共7页
基于双目视觉理论提出一种适用于不同光强、背景和任意形状充电插孔的高精度充电孔识别与定位方法。采用SIFT特征提取算法生成高斯差分金字塔进行尺度空间构建,应用机器学习最近邻搜索特征匹配算法获取匹配点映射集合,并配合半全局匹配... 基于双目视觉理论提出一种适用于不同光强、背景和任意形状充电插孔的高精度充电孔识别与定位方法。采用SIFT特征提取算法生成高斯差分金字塔进行尺度空间构建,应用机器学习最近邻搜索特征匹配算法获取匹配点映射集合,并配合半全局匹配方法进行视差计算得到高精度充电孔匹配和定位结果。通过试验验证了所提算法的有效性,得到了较为理想的匹配与测距结果。 展开更多
关键词 充电孔识别和定位 SIFT特征提取 最近邻搜索特征匹配 半全局匹配方法 视差计算
下载PDF
面向移动对象连续k近邻查询的双层索引结构 被引量:1
19
作者 韩士元 何清 +2 位作者 于自强 童向荣 郑渤龙 《软件学报》 EI CSCD 北大核心 2023年第6期2789-2803,共15页
移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询q的k近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及... 移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询q的k近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及移动对象连续k近邻查询这一基础问题.已有研究工作解决连续k近邻查询问题时,大多需要通过多次迭代确定一个包含k近邻的查询范围,而每次迭代需要根据移动对象的位置计算当前查询范围内移动对象的数量,整个迭代过程的计算代价占查询代价的很大部分.为此,提出了一种基于网络索引和混合高斯函数移动对象分布密度的双重索引结构(grid GMM index,GGI),并设计了移动对象连续k近邻增量查询算法(incremental search for continuous k nearest neighbors,IS-CKNN).GGI索引结构的底层采用网格索引对海量移动对象进行维护,上层构建混合高斯模型模拟移动对象在二维空间中的分布.对于给定的k近邻查询q,IS-CKNN算法能够基于混合高斯模型直接确定一个包含q的k近邻的查询区域,减少了已有算法求解该区域的多次迭代过程;当移动对象和查询q位置发生变化时,进一步提出一种高效的增量查询策略,能够最大限度地利用已有查询结果减少当前查询的计算量.最后,在滴滴成都网约车数据集以及两个模拟数据集上进行大量实验,充分验证了算法的性能. 展开更多
关键词 移动对象 连续k近邻查询(CKNN) 增量查询算法
下载PDF
基于两阶段搜索的密度聚类算法 被引量:1
20
作者 汪勇 李巧娜 艾学轶 《计算机工程与设计》 北大核心 2023年第1期188-193,共6页
为克服当前密度聚类算法存在的随机性、主观性和连带错误等问题,提出一种基于两阶段搜索的密度聚类算法。给出密度阈值和簇最近邻定义及计算方法。采用密度排序、簇最近邻分配和自适应搜索策略构建算法的两阶段聚类机制,设计邻域递归搜... 为克服当前密度聚类算法存在的随机性、主观性和连带错误等问题,提出一种基于两阶段搜索的密度聚类算法。给出密度阈值和簇最近邻定义及计算方法。采用密度排序、簇最近邻分配和自适应搜索策略构建算法的两阶段聚类机制,设计邻域递归搜索和簇最近邻搜索两个阶段的聚类算法,实现不同密度数据点的准确聚类。8个数据集聚类实验结果表明,该密度聚类算法聚类稳定,无噪声,且自动确定类簇数,聚类精度优于比较的密度聚类算法。 展开更多
关键词 聚类算法 密度聚类 算法设计 两阶段搜索 密度阈值 簇最近邻 分配策略
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部