Interest rates are the key to the resource allocations of financial markets.The frequent appearance of negative nominal interest rates(NNIR)may lead to a failure of the transmission mechanism and arouse system risks i...Interest rates are the key to the resource allocations of financial markets.The frequent appearance of negative nominal interest rates(NNIR)may lead to a failure of the transmission mechanism and arouse system risks in the financial markets.Meanwhile,negative nominal interest rates is a new policy with no consensus reached by academia or policymakers.It is necessary to review the research results and promote consensus to reveal the nature and impact mechanisms of NNIR.Therefore,we retrieved original articles from the Web of Science(WoS)and China National Knowledge Infrastructure(CNKI)published from 1999 to 2020 on NNIR to determine the characteristics of current research results from various perspectives and compare literature in English and Chinese of highly productive institutions and researchers,hot topics,evolution contexts,research frontiers,and ecological characteristics.There are three major findings.In terms of research ecology,the ecological structure of the top research institutions,both domestic and abroad,remains steady,but the structure of the researchers is not stable.In terms of a research domain,NNIR is studied from many dimensions,and the early established research domains still have long-lasting impacts in English literature.In contrast,Chinese literature mainly focuses on discussing applicable policies with no highly focused domain and research topic with great influence yet.Finally,the focus in both English and Chinese literature has changed.Since the original research framework is insufficient in explanatory power,literature in English is beginning to pay attention to the empirical analyses of practical policies,and Chinese scholars are turning to theoretical study to enhance the in-depth understanding of this phenomenon.Researchers in China should focus on collecting high-quality research materials and pay more attention to the progress of empirical research in English literature to improve Chinese research efficiency and quality and then promote research progress in China.展开更多
Purpose: Perforated peptic ulcer is an emergency condition. Laparoscopic ulcer repair is a feasible and safe procedure. The aim of this study was to research the efficacy of laparoscopic repair of peptic ulcer and to ...Purpose: Perforated peptic ulcer is an emergency condition. Laparoscopic ulcer repair is a feasible and safe procedure. The aim of this study was to research the efficacy of laparoscopic repair of peptic ulcer and to discuss the causes of conversion from laparoscopy to laparotomy. Methods: We collected 34 patients with perforated peptic ulcer underwent laparoscopic surgery from October 2003 to October 2008. Thirty four patients with perforated peptic ulcer underwent laparoscopic intervention and 6 cases were converted to laparotomy. The demographics, laboratory data, perioperative data, morbidity and mortality were compared. Results: In demographics of two groups, there were no significant differences in sex, age, location, and mean duration of symptoms of acute abdominal pain. However, there were significant differences in median size of perforation, mean duration of history of peptic ulcer related pain, and the experiences of surgeon. There were no significant differences in the laboratory data and perioperative data of two groups. In morbidity?and mortality of two groups, there were no significant differences in leakage, wound infection, intra-abdominal abscess, ileus, urinary tract infection, pneumonia, and mortality, but there was significant difference in overall morbidity in two groups. Conclusions: Laparoscopic repair of perforated peptic ulcer is safe and could be used in routine clinical practice. However, patients with larger perforations (>10 mm), longer duration of history peptic ulcer related pain (>2 years), and learning curve of surgeon could be associated with conversion rate. It is associated with higher morbidity in patients with conversion from laparoscopy to laparotomy.展开更多
Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and ...Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and pseudomorphic conversion to SrC2 O4·H2O occurs. In the second step, SrC2 O4·H2O reacts with H2C2O4 to form H[Sr(C2 O4)1.5(H2O)]. Sr(HC2 O4)(C2 O4)0.5·H2 O crystallizes during cooling of the reaction mixture to room temperature if the solution reaches the saturation concentration of (H[Sr(C2O4)1.5(H2O)]. The aims of this study are the derivation of reaction rate equations and the determination of the kinetic parameters such as pre-exponential factor, apparent activation energy and order of H2C2O4 concentration for each reaction step.Fractional conversions of SrSO4 were calculated using the quantitative amounts of dissolved S and Sr. It was determined that the reaction rate increased at the initial time of reaction by increasing the temperature using solutions with approximately same H2C2O4 concentrations. The reaction extends very slowly after a certain time in solutions with low H2C2O4 concentration and ends by the formation of a protective layer of SrC2O4-H2O around the surfaces of solid particles. Fractional conversion of SrSO4 is increased by increasing concentration of H2C2O4 at constant temperature. Kinetic model equations were derived using shrinking core model for each step.展开更多
Sampling rate conversion finds great use in the area of multirate signal processing, communications system, speech processing system, etc. In this paper, we describe a structure of 72 MHz/54 MHz sampling rate conversi...Sampling rate conversion finds great use in the area of multirate signal processing, communications system, speech processing system, etc. In this paper, we describe a structure of 72 MHz/54 MHz sampling rate conversion system which is applied to HDTV system. First, we discuss the theoretical model of a 4/3 conversion scheme and then design the hardware structure implemented in parallel and illustrate the subsystem structure in detail. Finally, the phase diagrams are presented to show the relations between the clocks.展开更多
The conversion rates of SO2 to SO42- and NO2 to HNO3+NO3- are estimated from the field-data obtained in Beijing in summer, 1988. The results show that the conversion rate of NO2 is about four times as much as that of ...The conversion rates of SO2 to SO42- and NO2 to HNO3+NO3- are estimated from the field-data obtained in Beijing in summer, 1988. The results show that the conversion rate of NO2 is about four times as much as that of SO2; The conversion rates have a diurnal variation in a day. On the average, the rate of SO2 is estimated to be 4.7% h-1 during the daytime and 3.4% h-1 during the nighttime. Similarly, the rate of NO2 is estimated to be 17.2% h-1 and 12% h-1 respectively.展开更多
Surface OH radical concentration in Beijing City was measured by impregnated filter trapping technique-high performance liquid chromatography (IFT-HPLC). The observed concentration of OH radical showed obvious diurnal...Surface OH radical concentration in Beijing City was measured by impregnated filter trapping technique-high performance liquid chromatography (IFT-HPLC). The observed concentration of OH radical showed obvious diurnal and seasonal variations, with maximum readings at noon or afternoon, similar to 80x10(6)OH/cm(3) in summer and similar to 20x10(6)-40x10(6)OH/cm(3) in fall. On the basis of measured data, the reaction rates related to the photochemical process of HO(x) (OH+HO(2)) were derived and characteristics of atmospheric chemical processes in the city were analyzed. The results showed that conversion rates of atmospheric OH and HO(2) in the summer of Beijing City were about 700x10(6) molecule/(cm(3) . s) and 600x10(6)molecule/(cm(3) . s), respectively. And the net production of OH in the air of the city mainly originated from the photolysis of the gaseous HNO(2), and the main sink of OH were the photochemical reactions with VOCs, NO(2), HCHO and CO. It was different from the clean area.展开更多
This paper concerns the influence of temperature and local concentration of oxygen on the conversion efficiency of carbon into CO, CO2, CH4, C3H8, C2H4, C2H2, C2H6, C6H6, during the thermal degradation of plastic bags...This paper concerns the influence of temperature and local concentration of oxygen on the conversion efficiency of carbon into CO, CO2, CH4, C3H8, C2H4, C2H2, C2H6, C6H6, during the thermal degradation of plastic bags and millet stalks. The experimental device used is the tubular kiln, coupled to an analyzer Fourier Transform Infrared (FTIR) and a Non Dispersive Infrared analyzer (NDIR). Temperatures are considered between 800 and 1000°C. Local concentrations of oxygen during thermal degradation are 0%, 10% and 21%. On the one hand results obtained on the influence of temperature show that for each type of thermal degradation and whatever the temperature of the combustion, the rate of conversion of carbon remains substantially the same. In the case of plastic bags, the rate of carbon converted during pyrolysis is about 90% of carbon converted during reductive combustion. On the other hand, with millet stalks, the carbon converted represents only 60% of the rate of carbon converted during combustion to 10% oxygen. 1 to 2% of carbon not analyzed is in the form of aromatic compounds that are found most often in the soot and/or tar from this combustion system. Moreover, whatever the temperature, the overall efficiency of carbon conversion increases linearly with the local concentration of oxygen. During the thermal degradation of plastic bags, we see that the reducer environment has fostered the conversion of 7% of carbon more while the presence of oxygen in double proportion promotes the conversion of 27% carbon. Regarding the influence of the local content of oxygen, it is clear that for plastic bags, the reactions of oxidation of CO into CO2 tend to be favored for the benefit of those of hydrocarbons into CO. The formation of CO and CO2 by oxidation of light hydrocarbons is primarily from gaseous compounds CH4 and C2H4. At 950°C, we have also acetylene (C2H2) which is involved in the production of carbon oxides. At 1000°C, benzene (C6H6) heavily involved in the formation of CO and CO2. However, with millet stalks, more the local content of oxygen increases, more combustion is better, that is to say that the oxidation reactions producing CO2 are faster than the oxidation reactions of hydrocarbons into CO. The rate of carbon converted into CO and CO2 is higher for millet stalks than for plastic bags, due to this oxygen levels higher in millet stalks than in plastic bags. Similarly, for the millet stalks, from pyrolysis to combustion (at 10 and 21% oxygen), there is practically no hydrocarbon emitted.展开更多
In this paper, we examine further annuity-due risk model presented by Cai (Probability in the Engineering and Informational Sciences, 16(2002), 309-324). We consider the computation for the distribution of duratio...In this paper, we examine further annuity-due risk model presented by Cai (Probability in the Engineering and Informational Sciences, 16(2002), 309-324). We consider the computation for the distribution of duration of first negative surplus and the algorithm is shown for calculating probability that ruin occurs and the duration of first negative surplus takes any nonnegative integers values. Numerical illustration for the main result is given.展开更多
This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for wheat by data mining method based on data of"3414 fertilizer field trials"of whea...This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for wheat by data mining method based on data of"3414 fertilizer field trials"of wheat by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of wheat for plot was that,Y N≈a+b×optimum nitrogen application amount+c×optimum fertilizer amount of K+d×rainfall in growth season,Y P≈a+b×optimum fertilizer amount of K+c×rainfall in growth season,Y K≈a+b×temperature in growth season+c×rainfall in growth season-d×optimum yield-e×optimum nitrogen application amount,respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships.No significant relationships:13,of which 8 were soil nutrients,the results showed that soil nutrients had little effect on nutrient conversion rate and fertilizer utilization ratio;consistent significant relationships:4,they were all nitrogen and phosphorus,explaining the importance of nitrogen and phosphorus;contrary significant relationships:6,they were all nitrogen and phosphorus,illustrating that phosphorus and nitrogen had inhibitory effect;complementary significant relationships:31,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the measuring index of fertilizer efficiency in one season,while the nutrient conversion rate was the measuring index of fertilizer efficiency in more seasons.It showed that the fertilizer utilization rate was significantly correlated,or the nutrient conversion rate was significantly correlated.展开更多
This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for rice by data mining method based on data of"3414 fertilizer field trials"of rice ...This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for rice by data mining method based on data of"3414 fertilizer field trials"of rice by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of rice for plot was that,Y N≈a+b×optimum yield+c×optimum fertilizer amount of K,Y P≈a+b×optimum yield,Y K≈a respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships:①no significant relationships:25,of which 14 were soil nutrients and 9 were environmental factors,the results showed that soil nutrients and environmental factors had little effect on nutrient yield ratio and fertilizer utilization ratio;②consistent significant relationships:2,one was that yield ratio and utilization ratio of N were positively correlated with the optimum production,explaining the importance of N for production,the other was that yield ratio and utilization ratio of P had a significantly positive correlation with conversion rate and utilization ratio of N,illustrating that nitrogen and phosphorus had mutual promotion;③contrary significant relationships:5,these showed as negative correlations of fertilizer utilization ratio and positive correlation of nutrient conversion ratio;④complementary significant relationships:22,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the index of fertilizer efficiency in one season,while the nutrient conversion rate was the index of fertilizer efficiency in more seasons,which showed that the fertilizer utilization rate was significantly correlated,or the nutrient conversion rate was significantly correlated.展开更多
This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for maize by data mining method based on data of"3414 fertilizer field trials"of maiz...This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for maize by data mining method based on data of"3414 fertilizer field trials"of maize by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of maize for plot was that,Y N≈a+b×optimum yield,Y P≈a+b×optimum yield-c×optimum nitrogen application amount-d×optimum potassium application amount,Y K≈a-b×optimum nitrogen application amount-c×temperature in growth season-d×rainfall in growth season,respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships.No significant relationships:22,of which 16 were soil nutrients and 5 were environmental factors,the results showed that soil nutrients and environmental factors had little effect on nutrient conversion rate and fertilizer utilization ratio;consistent significant relationships:14,illustrating that conversion rate and utilization ratio of maize were consistent in most cases,and it was because that maize was planted for a long term,and its fertilizer absorption law was basically stable;contrary significant relationships:0,illustrating that there was no reverse relationship between conversion rate and utilization ratio of maize;complementary significant relationships:18,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the measuring index of fertilizer efficiency in one season,while the nutrient conversion rate was the measuring index of fertilizer efficiency in more seasons.It showed that the fertilizer utilization ratio was significantly correlated,or the nutrient conversion rate was significantly correlated.展开更多
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety...Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices.展开更多
利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影...利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影响,最后利用中尺度数值模式WRF4.0(Weather Research and Forecasting Model)设计地形敏感性试验验证地形对西南地区东部夏季降水的作用。结果表明:(1)1961—2020年夏季西南地区东部的降水呈现东多西少的分布特征,但水汽含量却在其东南部和西北部存在两个大值区,水汽大值区降水转化率偏低,强降水区与水汽含量大值区分布存在明显差异,通过分析强降水区与水平风场及垂直速度场的形势配合发现地形是导致此差异的重要因素。(2)WRF模式能较好地模拟出西南地区东部夏季降水的空间分布特征,通过地形敏感性试验发现,区域内大娄山、方斗山及大巴山组成的西南-东北向山地地形分布对降水强度有显著影响,地形高度的降低将导致区域东南部降水量显著减少。(3)敏感性试验中将区域地形高度分别降低一半和去除地形后,区域东南部的降水在月时间尺度中将分别减少9.89%和19.90%。地形高度的改变也会引起区域垂直速度、水平风场、水汽输送及水汽辐合量发生改变,当地形高度降低后,上升运动及西南风明显减弱,水汽输送强度降低,水汽辐合量减少,不利于降水形成。展开更多
基金Planning Projects on Philosophy and Social Sciences of Shanghai(2020BJB020).
文摘Interest rates are the key to the resource allocations of financial markets.The frequent appearance of negative nominal interest rates(NNIR)may lead to a failure of the transmission mechanism and arouse system risks in the financial markets.Meanwhile,negative nominal interest rates is a new policy with no consensus reached by academia or policymakers.It is necessary to review the research results and promote consensus to reveal the nature and impact mechanisms of NNIR.Therefore,we retrieved original articles from the Web of Science(WoS)and China National Knowledge Infrastructure(CNKI)published from 1999 to 2020 on NNIR to determine the characteristics of current research results from various perspectives and compare literature in English and Chinese of highly productive institutions and researchers,hot topics,evolution contexts,research frontiers,and ecological characteristics.There are three major findings.In terms of research ecology,the ecological structure of the top research institutions,both domestic and abroad,remains steady,but the structure of the researchers is not stable.In terms of a research domain,NNIR is studied from many dimensions,and the early established research domains still have long-lasting impacts in English literature.In contrast,Chinese literature mainly focuses on discussing applicable policies with no highly focused domain and research topic with great influence yet.Finally,the focus in both English and Chinese literature has changed.Since the original research framework is insufficient in explanatory power,literature in English is beginning to pay attention to the empirical analyses of practical policies,and Chinese scholars are turning to theoretical study to enhance the in-depth understanding of this phenomenon.Researchers in China should focus on collecting high-quality research materials and pay more attention to the progress of empirical research in English literature to improve Chinese research efficiency and quality and then promote research progress in China.
文摘Purpose: Perforated peptic ulcer is an emergency condition. Laparoscopic ulcer repair is a feasible and safe procedure. The aim of this study was to research the efficacy of laparoscopic repair of peptic ulcer and to discuss the causes of conversion from laparoscopy to laparotomy. Methods: We collected 34 patients with perforated peptic ulcer underwent laparoscopic surgery from October 2003 to October 2008. Thirty four patients with perforated peptic ulcer underwent laparoscopic intervention and 6 cases were converted to laparotomy. The demographics, laboratory data, perioperative data, morbidity and mortality were compared. Results: In demographics of two groups, there were no significant differences in sex, age, location, and mean duration of symptoms of acute abdominal pain. However, there were significant differences in median size of perforation, mean duration of history of peptic ulcer related pain, and the experiences of surgeon. There were no significant differences in the laboratory data and perioperative data of two groups. In morbidity?and mortality of two groups, there were no significant differences in leakage, wound infection, intra-abdominal abscess, ileus, urinary tract infection, pneumonia, and mortality, but there was significant difference in overall morbidity in two groups. Conclusions: Laparoscopic repair of perforated peptic ulcer is safe and could be used in routine clinical practice. However, patients with larger perforations (>10 mm), longer duration of history peptic ulcer related pain (>2 years), and learning curve of surgeon could be associated with conversion rate. It is associated with higher morbidity in patients with conversion from laparoscopy to laparotomy.
基金the financial support of the Scientific Research Projects Coordination Unit of Istanbul University (Project number: 17344 and 31088)
文摘Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and pseudomorphic conversion to SrC2 O4·H2O occurs. In the second step, SrC2 O4·H2O reacts with H2C2O4 to form H[Sr(C2 O4)1.5(H2O)]. Sr(HC2 O4)(C2 O4)0.5·H2 O crystallizes during cooling of the reaction mixture to room temperature if the solution reaches the saturation concentration of (H[Sr(C2O4)1.5(H2O)]. The aims of this study are the derivation of reaction rate equations and the determination of the kinetic parameters such as pre-exponential factor, apparent activation energy and order of H2C2O4 concentration for each reaction step.Fractional conversions of SrSO4 were calculated using the quantitative amounts of dissolved S and Sr. It was determined that the reaction rate increased at the initial time of reaction by increasing the temperature using solutions with approximately same H2C2O4 concentrations. The reaction extends very slowly after a certain time in solutions with low H2C2O4 concentration and ends by the formation of a protective layer of SrC2O4-H2O around the surfaces of solid particles. Fractional conversion of SrSO4 is increased by increasing concentration of H2C2O4 at constant temperature. Kinetic model equations were derived using shrinking core model for each step.
文摘Sampling rate conversion finds great use in the area of multirate signal processing, communications system, speech processing system, etc. In this paper, we describe a structure of 72 MHz/54 MHz sampling rate conversion system which is applied to HDTV system. First, we discuss the theoretical model of a 4/3 conversion scheme and then design the hardware structure implemented in parallel and illustrate the subsystem structure in detail. Finally, the phase diagrams are presented to show the relations between the clocks.
文摘The conversion rates of SO2 to SO42- and NO2 to HNO3+NO3- are estimated from the field-data obtained in Beijing in summer, 1988. The results show that the conversion rate of NO2 is about four times as much as that of SO2; The conversion rates have a diurnal variation in a day. On the average, the rate of SO2 is estimated to be 4.7% h-1 during the daytime and 3.4% h-1 during the nighttime. Similarly, the rate of NO2 is estimated to be 17.2% h-1 and 12% h-1 respectively.
基金Under the auspices of the National Natural Science Foundation of China(No.40075026)
文摘Surface OH radical concentration in Beijing City was measured by impregnated filter trapping technique-high performance liquid chromatography (IFT-HPLC). The observed concentration of OH radical showed obvious diurnal and seasonal variations, with maximum readings at noon or afternoon, similar to 80x10(6)OH/cm(3) in summer and similar to 20x10(6)-40x10(6)OH/cm(3) in fall. On the basis of measured data, the reaction rates related to the photochemical process of HO(x) (OH+HO(2)) were derived and characteristics of atmospheric chemical processes in the city were analyzed. The results showed that conversion rates of atmospheric OH and HO(2) in the summer of Beijing City were about 700x10(6) molecule/(cm(3) . s) and 600x10(6)molecule/(cm(3) . s), respectively. And the net production of OH in the air of the city mainly originated from the photolysis of the gaseous HNO(2), and the main sink of OH were the photochemical reactions with VOCs, NO(2), HCHO and CO. It was different from the clean area.
文摘This paper concerns the influence of temperature and local concentration of oxygen on the conversion efficiency of carbon into CO, CO2, CH4, C3H8, C2H4, C2H2, C2H6, C6H6, during the thermal degradation of plastic bags and millet stalks. The experimental device used is the tubular kiln, coupled to an analyzer Fourier Transform Infrared (FTIR) and a Non Dispersive Infrared analyzer (NDIR). Temperatures are considered between 800 and 1000°C. Local concentrations of oxygen during thermal degradation are 0%, 10% and 21%. On the one hand results obtained on the influence of temperature show that for each type of thermal degradation and whatever the temperature of the combustion, the rate of conversion of carbon remains substantially the same. In the case of plastic bags, the rate of carbon converted during pyrolysis is about 90% of carbon converted during reductive combustion. On the other hand, with millet stalks, the carbon converted represents only 60% of the rate of carbon converted during combustion to 10% oxygen. 1 to 2% of carbon not analyzed is in the form of aromatic compounds that are found most often in the soot and/or tar from this combustion system. Moreover, whatever the temperature, the overall efficiency of carbon conversion increases linearly with the local concentration of oxygen. During the thermal degradation of plastic bags, we see that the reducer environment has fostered the conversion of 7% of carbon more while the presence of oxygen in double proportion promotes the conversion of 27% carbon. Regarding the influence of the local content of oxygen, it is clear that for plastic bags, the reactions of oxidation of CO into CO2 tend to be favored for the benefit of those of hydrocarbons into CO. The formation of CO and CO2 by oxidation of light hydrocarbons is primarily from gaseous compounds CH4 and C2H4. At 950°C, we have also acetylene (C2H2) which is involved in the production of carbon oxides. At 1000°C, benzene (C6H6) heavily involved in the formation of CO and CO2. However, with millet stalks, more the local content of oxygen increases, more combustion is better, that is to say that the oxidation reactions producing CO2 are faster than the oxidation reactions of hydrocarbons into CO. The rate of carbon converted into CO and CO2 is higher for millet stalks than for plastic bags, due to this oxygen levels higher in millet stalks than in plastic bags. Similarly, for the millet stalks, from pyrolysis to combustion (at 10 and 21% oxygen), there is practically no hydrocarbon emitted.
基金The NNSF (10671072) of China"Shu Guang" project (04SG27) of Shanghai Municipal Education CommissionShanghai Education Development Foundation
文摘In this paper, we examine further annuity-due risk model presented by Cai (Probability in the Engineering and Informational Sciences, 16(2002), 309-324). We consider the computation for the distribution of duration of first negative surplus and the algorithm is shown for calculating probability that ruin occurs and the duration of first negative surplus takes any nonnegative integers values. Numerical illustration for the main result is given.
基金Collaborative Innovation Task of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences—Integration and Demonstration of Green and Efficient Agricultural Technology Innovation in Danjiangkou Water Conservation Area(CAAS-XTCX2016015)Major Scientific and Technological Projects in Guangxi(GUIKE AA17204077)+2 种基金Special Project of Guangxi Science and Technology Base and Talent(GUIKE AD18126012)First-class Discipline(Geography)Construction Project in GuangxiSpecial Funds for"Guangxi Bagui Scholars".
文摘This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for wheat by data mining method based on data of"3414 fertilizer field trials"of wheat by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of wheat for plot was that,Y N≈a+b×optimum nitrogen application amount+c×optimum fertilizer amount of K+d×rainfall in growth season,Y P≈a+b×optimum fertilizer amount of K+c×rainfall in growth season,Y K≈a+b×temperature in growth season+c×rainfall in growth season-d×optimum yield-e×optimum nitrogen application amount,respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships.No significant relationships:13,of which 8 were soil nutrients,the results showed that soil nutrients had little effect on nutrient conversion rate and fertilizer utilization ratio;consistent significant relationships:4,they were all nitrogen and phosphorus,explaining the importance of nitrogen and phosphorus;contrary significant relationships:6,they were all nitrogen and phosphorus,illustrating that phosphorus and nitrogen had inhibitory effect;complementary significant relationships:31,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the measuring index of fertilizer efficiency in one season,while the nutrient conversion rate was the measuring index of fertilizer efficiency in more seasons.It showed that the fertilizer utilization rate was significantly correlated,or the nutrient conversion rate was significantly correlated.
基金Major Scientific and Technological Projects in Guangxi(GUIKE AA17204077)Special Project of Guangxi Science and Technology Base and Talent(GUIKE AD18126012)+2 种基金First-class Discipline(Geography)Construction Project in GuangxiSpecial Funds for"Guangxi Bagui Scholars"Collaborative Innovation Task of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences—Integration and Demonstration of Green and Efficient Agricultural Technology Innovation in Danjiangkou Water Conservation Area(CAAS-XTCX2016015).
文摘This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for rice by data mining method based on data of"3414 fertilizer field trials"of rice by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of rice for plot was that,Y N≈a+b×optimum yield+c×optimum fertilizer amount of K,Y P≈a+b×optimum yield,Y K≈a respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships:①no significant relationships:25,of which 14 were soil nutrients and 9 were environmental factors,the results showed that soil nutrients and environmental factors had little effect on nutrient yield ratio and fertilizer utilization ratio;②consistent significant relationships:2,one was that yield ratio and utilization ratio of N were positively correlated with the optimum production,explaining the importance of N for production,the other was that yield ratio and utilization ratio of P had a significantly positive correlation with conversion rate and utilization ratio of N,illustrating that nitrogen and phosphorus had mutual promotion;③contrary significant relationships:5,these showed as negative correlations of fertilizer utilization ratio and positive correlation of nutrient conversion ratio;④complementary significant relationships:22,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the index of fertilizer efficiency in one season,while the nutrient conversion rate was the index of fertilizer efficiency in more seasons,which showed that the fertilizer utilization rate was significantly correlated,or the nutrient conversion rate was significantly correlated.
基金Collaborative Innovation Task of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences—Integration and Demonstration of Green and Efficient Agricultural Technology Innovation in Danjiangkou Water Conservation Area(CAAS-XTCX2016015)Major Scientific and Technological Projects in Guangxi(GUIKE AA17204077)+2 种基金Special Project of Guangxi Science and Technology Base and Talent(GUIKE AD18126012)First-class Discipline(Geography)Construction Project in GuangxiSpecial Funds for"Guangxi Bagui Scholars".
文摘This paper studied the relationships between utilization ratios and conversion rates of nitrogen,phosphorus and potassium for maize by data mining method based on data of"3414 fertilizer field trials"of maize by published papers from national soil testing and recommendation since 2005.The results and conclusions were as follows:①the conceptual model of fertilizer utilization ratio of maize for plot was that,Y N≈a+b×optimum yield,Y P≈a+b×optimum yield-c×optimum nitrogen application amount-d×optimum potassium application amount,Y K≈a-b×optimum nitrogen application amount-c×temperature in growth season-d×rainfall in growth season,respectively.②Fertilizer utilization ratio and nutrient conversion rate had 4 kinds of relationships.No significant relationships:22,of which 16 were soil nutrients and 5 were environmental factors,the results showed that soil nutrients and environmental factors had little effect on nutrient conversion rate and fertilizer utilization ratio;consistent significant relationships:14,illustrating that conversion rate and utilization ratio of maize were consistent in most cases,and it was because that maize was planted for a long term,and its fertilizer absorption law was basically stable;contrary significant relationships:0,illustrating that there was no reverse relationship between conversion rate and utilization ratio of maize;complementary significant relationships:18,the cause of the complementary phenomenon was that the fertilizer utilization ratio was the measuring index of fertilizer efficiency in one season,while the nutrient conversion rate was the measuring index of fertilizer efficiency in more seasons.It showed that the fertilizer utilization ratio was significantly correlated,or the nutrient conversion rate was significantly correlated.
基金National Natural Science Foundation of China(12205028)Natural Science Foundation of Sichuan Province(2022NSFSC1235)Young and Middle-aged Backbone Teacher Foundation of Chengdu University of Technology(10912-JXGG2022-08363)。
文摘Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices.
文摘利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影响,最后利用中尺度数值模式WRF4.0(Weather Research and Forecasting Model)设计地形敏感性试验验证地形对西南地区东部夏季降水的作用。结果表明:(1)1961—2020年夏季西南地区东部的降水呈现东多西少的分布特征,但水汽含量却在其东南部和西北部存在两个大值区,水汽大值区降水转化率偏低,强降水区与水汽含量大值区分布存在明显差异,通过分析强降水区与水平风场及垂直速度场的形势配合发现地形是导致此差异的重要因素。(2)WRF模式能较好地模拟出西南地区东部夏季降水的空间分布特征,通过地形敏感性试验发现,区域内大娄山、方斗山及大巴山组成的西南-东北向山地地形分布对降水强度有显著影响,地形高度的降低将导致区域东南部降水量显著减少。(3)敏感性试验中将区域地形高度分别降低一半和去除地形后,区域东南部的降水在月时间尺度中将分别减少9.89%和19.90%。地形高度的改变也会引起区域垂直速度、水平风场、水汽输送及水汽辐合量发生改变,当地形高度降低后,上升运动及西南风明显减弱,水汽输送强度降低,水汽辐合量减少,不利于降水形成。