Negative feedback serves as a means of correcting and rectifying students’utterances.While content feedback is commonly used in extensive reading course,indirect feedback dominates in written assignments,providing st...Negative feedback serves as a means of correcting and rectifying students’utterances.While content feedback is commonly used in extensive reading course,indirect feedback dominates in written assignments,providing students with opportunities for second thoughts and self-correction.For oral limited-response and open-ended questions,recasts are predominantly used to give students more time to reflect and reduce teacher talk,thereby mitigating anxiety and enhancing learning motivation.展开更多
A robust digital predistortion(DPD)technique utilizing negative feedback iteration is introduced for linearizing power amplifiers(PAs)in long term evolution(LTE)/5G systems.Different from the conventional direct learn...A robust digital predistortion(DPD)technique utilizing negative feedback iteration is introduced for linearizing power amplifiers(PAs)in long term evolution(LTE)/5G systems.Different from the conventional direct learning and indirect learning structure,the proposed DPD suggests a two-step method to identify the predistortion.Firstly,a negative feedback based iteration is used to estimate the optimal DPD signal.Then the corresponding DPD parameters are extracted by forward modeling with the input signal and optimal DPD signal.The iteration can be applied to both single-band and dual-band PAs,which will achieve superior linear performance than the conventional direct learning DPD while having a relatively low computational complexity.The measurement is carried out on a broadband Doherty PA(DPA)with a 200 MHz bandwidth LTE signal at 2.1 GHz,and on a 5G DPA with two 10 MHz LTE signals at 3.4/3.6 GHz for validation in dual-band scenarios.展开更多
Waveform control method was commonly adopted to reduce the spatter of CO2 arc welding and improve the weld formation. It certainly would reduce the self-regulation ability of arc due to the adoption of segmented const...Waveform control method was commonly adopted to reduce the spatter of CO2 arc welding and improve the weld formation. It certainly would reduce the self-regulation ability of arc due to the adoption of segmented constant current control which especially led to arc" blowout with the abrupt change oat" arc" length or downward welding. Therefore alterative wire-feed system based on arc voltage negative feedback was put forward to improve the .stability of arc" length in this paper. Double closed-loop and double fuzzy P1 regulation were adopted in this system. Fuzzy control of induced voltage was adopted in the inner-loop which improved the stability and fast response of wire-feed system. Fuzz)" control of arc" voltage negative feedback was used in the outer-loop whose output .served as the input of negative feedback regulation of inner-loop induced voltage. This method could remain arc" length and weld penetration unchan, ged on the basils of reducing spatter and improving formation and it was proved by downward welding tests.展开更多
The design and fabrication of an ultra-broadband power amplifier based on a GaN HEMT, which operates in the frequency range from 3 to 8 GHz, is presented in this paper. A TGF2023-02 GaN HEMT chip from Tri Quint is ado...The design and fabrication of an ultra-broadband power amplifier based on a GaN HEMT, which operates in the frequency range from 3 to 8 GHz, is presented in this paper. A TGF2023-02 GaN HEMT chip from Tri Quint is adopted and modeled. A novel negative feedback structure is applied in the circuit. The measured results show that the amplifier module has a wide range frequency response that is almost consistent with those of simulation at frequencies from 3 to 6.5 GHz. The measured power gain is greater than 7 dB between 3 and 6.5 GHz.The saturated output power is 38.5 dBm under DC bias of Vds =D28 V, Vgs D =-3:5 V at the frequency of 5.5 GHz.展开更多
A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.T...A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.This proposed implementation relies on the tunability of current-steering MOS transistors operating in the triode region counteracting the concert deviation of resistor in the integrated circuit manufacturing technology in orde r that the group delay of Bessel active filter could be designed accurately.The amplifier is not only with voltage common-mode negative feedback,but also with current common-mode negative feedback,which will benefit for the stability of its D C operating point.0.75μs group delay fourth-order Bessel lowpass filter,whic h is synthesized according to passive doubly terminated RLC prototype lowpass filter,demonstrates better than -65dB THD using 100kHz,2.5V pp signal in Taiwan UMC 2P2M(2-poly,2-metal)5.0V,0.5μm CMOS technology.展开更多
Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order in...Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order intermodulation distortion(IM2 ), the third order intermodulation distortion(IM 3) and intercept point(IP 3) are deduced. With the aid of software Multisim, we simulate transistor common emitter amplifier, transistor common emitter amplifier with resistor in emitter, differential amplifier and differential amplifier with resistor between emitters. The simulational results and theoretical analyses are almost the same.展开更多
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formation...In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.展开更多
Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data...Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that smafl RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and mmntenance of homeostasis. According to Michaelis-Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.展开更多
A 12-Gbit/s low-power,wide-bandwidh CMOS(complementary metal oxide semiconductor)dual negative feedback feed-forward common gate(DNFFCG)differential trans-impedance amplifier(TIA)is presented for the veryshort-reach(V...A 12-Gbit/s low-power,wide-bandwidh CMOS(complementary metal oxide semiconductor)dual negative feedback feed-forward common gate(DNFFCG)differential trans-impedance amplifier(TIA)is presented for the veryshort-reach(VSR)optoelectronic integrated circuit(OEIC)receiver.The dominant pole of the input node is shifted up to a high frequency,and thus the bandwidth of the CMOS DNFFCG TIA is improved.Besides,two negative feedback loops are used to reduce the input impedance and further increase the bandwidth.The proposed TIA was fabricated using TSMC 0.18 jxm CMOS technology.The whole circuit has a compact chip area,the core area of which is only 0.003 6 mm2.The power consumption is 14.6 mW excluding 2-stage differential buffers.The test results indicate that the 3 dB bandwidth of 9 GHz is achieved with a 1 8 V supply voltage and its trans-impedance gain is 49.2 dBH.The measured average equivalent input noise current density is 28.1 pA H z12.Under the same process conditions,the DNFFCG has better gain bandwidth product compared with those in the published papers.展开更多
Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain bala...Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain balance.Two distinct athlete groups who experience different types of sport-specific balance training are stable surface athletes(SSA) such as basketball players and those who train on unstable surfaces(USA) such as surfers.The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON.Methods:Eight NON,eight SSA,and eight USA performed five 20-s trials in each of five experimental conditions including a static condition and four dynamic conditions in which the support surface translated in the anteroposterior(AP) or mediolateral(ML) planes using positive or negative feedback paradigms.Approximate entropy(Ap En) and root mean square distance(RMS) of the center of pressure(Co P) were calculated for the AP and ML directions.Four 3 × 5(group × condition) repeated measures ANOVAs were used to determine significant effects of group and condition on variables of interest.Results:USA exhibited smaller Ap En values than SSA in the AP signals while no significant differences were observed in the ML Co P signals.Generally,the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions.Conclusion:USA exhibit unique postural strategies compared to SSA.These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies.展开更多
It is observed by in situ stain that LDH (1 5) ...nNAD + can probably enter the nucleopore and can be bound bound specifically with the genes that encode them. During the in vitro expression, the dilution of heart nuc...It is observed by in situ stain that LDH (1 5) ...nNAD + can probably enter the nucleopore and can be bound bound specifically with the genes that encode them. During the in vitro expression, the dilution of heart nuclear DNA fragments could enhance the expression activity of LDH/DNA and the amount of expressed LDH (1 5) is in proportion to the amount of dissociable LDH (1 5) on the LDH/DNA. With the integration of 14C Leu to the proteins, it is also observed that the addition of LDH (1 5) ...nNAD + can suppress the in vitro expression activity of LDH/DNA. AFM observation shows that the regulation sequence at the both ends of active genes may be bound with such active factors as proteins encoded by the genes which probably is the main molecular switch of gene expression and regulation we have been always searching for. Our work shows the prospective application of the combination of AFM and isotope labeling in the research of biological reaction.展开更多
Plants exhibit an astonishing ability to regulate organ regeneration upon wounding.Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid(IAA),which is polar-transported to excised regions,where c...Plants exhibit an astonishing ability to regulate organ regeneration upon wounding.Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid(IAA),which is polar-transported to excised regions,where cell fate transition leads to root founder cell specification to induce de novo root regeneration.The regeneration capacity of plants has been utilized to develop in vitro tissue culture technologies.Here,we report that IAA accumulation near the wounded site of leaf explants is essential for callus formation on 2,4-dichlorophenoxyacetic acid(2,4-D)-rich callus-inducing medium(CIM).Notably,a high concentration of 2,4-D does not compensate for the action of IAA because of its limited efflux;rather,it lowers IAA biosynthesis via a negative feedback mechanism at an early stage of in vitro tissue culture,delaying callus initiation.The auxin negative feedback loop in CIM-cultured leaf explants is mediated by an auxin-inducible APETALA2 transcription factor,ENHANCER OF SHOOT REGENERATION 2(ESR2),along with its interacting partner HISTONE DEACETYLASE 6(HDA6).The ESR2–HDA6 complex binds directly to,and removes the H3ac mark from,the YUCCA1(YUC1),YUC7,and YUC9 loci,consequently repressing auxin biosynthesis and inhibiting cell fate transition on 2,4-D-rich CIM.These findings indicate that negative feedback regulation of auxin biosynthesis by ESR2 and HDA6 interferes with proper cell fate transition and callus initiation.展开更多
Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.I...Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.In this study,we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures.Interestingly,we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7.We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs,thereby promoting the ubiquitination of OsJAZ1 by the SCF^(OsCOI1a/OsCOI1b) complex and degradation via the 26S proteasome.This process ultimately releases OsMYC2,a core transcriptional regulator in the JA signaling pathway,to activate or repress JA-responsive genes,thereby maintaining normal plant(spikelet)development.However,in the osprmt6a-1 mutant,reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs.As a result,OsJAZ1 proteins become more stable,repressing JA responses,thus causing the formation of abnormal spikelet structures.Moreover,we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner,thereby establishing a negative feedback loop to balance JA signaling.We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures.Collectively,our study establishes a direct molecular link between arginine methylation and JA signaling in rice.展开更多
Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms an...Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, ELL1, EIN2, ETR2, EBFI/EBF2, and ETPI/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/ EIL1 act as a convergence point in the ethylene-initiated signaling network.展开更多
Hippo signaling plays a crucial role in growth control and tumor suppression by regulating cell proliferation,apoptosis,and differentiation.How Hippo signaling is regulated has been under extensive investigation.Over ...Hippo signaling plays a crucial role in growth control and tumor suppression by regulating cell proliferation,apoptosis,and differentiation.How Hippo signaling is regulated has been under extensive investigation.Over the past three years,an increasing amount of data have supported a model of actin cytoskeleton blocking Hippo signaling activity to allow nuclear accumulation of a downstream effector,Yki/Yap/Taz.On the other hand,Hippo signaling negatively regulates actin cytoskeleton organization.This review p rovides insight on the mutual regulatory mechanisms between Hippo signaling and actin cytoskeleton for a tight control of cell behaviors during animal development,and points out outstanding questions for further investigations.展开更多
apamvcin was first isolated from a strain of Sreptomyces hygroscopicus in the early 1970s froma soil sample taken on Easter Island. Because the antiproliferative effects of rapamycin on yeast cell, as well as B and T ...apamvcin was first isolated from a strain of Sreptomyces hygroscopicus in the early 1970s froma soil sample taken on Easter Island. Because the antiproliferative effects of rapamycin on yeast cell, as well as B and T lymphocytes, it was first identified as an antimicrobial agent with potent immunosuppressive activity and has been used in antirejection therapy.展开更多
This paper presents post-layout simulated results of an analog baseband chain for mobile and multimedia applications in a 0.13-μm SiGe BiCMOS process.A programmable 7th-order Chebyshev low pass filter with a calibrat...This paper presents post-layout simulated results of an analog baseband chain for mobile and multimedia applications in a 0.13-μm SiGe BiCMOS process.A programmable 7th-order Chebyshev low pass filter with a calibration circuit is used in the analog baseband chain,and the programmable bandwidth is 1.8/2.5/3/3.5/4 MHz with an attenuation of 26/62 dB at offsets of 1.25/4 MHz.The baseband programmable gain amplifier can achieve a linear 40-dB gain range with 0.5-dB steps.Design trade-offs are carefully considered in designing the baseband circuit,and an automatic calibration circuit is used to achieve the bandwidth accuracy of 2%.A DC offset cancellation loop is also introduced to remove the offset from the layout and self-mixing,and the remaining offset voltage is only 1.87 mV.Implemented in a 0.13-μm SiGe technology with a 0.6-mm2 die size,this baseband achieves IIP3 of 23.16 dBm and dissipates 22.4 mA under a 2.5-V supply.展开更多
A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback...A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18μm CMOS technology. The active area occupied by the filter with test buffer is only 200 × 170 μm^2. The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range.展开更多
文摘Negative feedback serves as a means of correcting and rectifying students’utterances.While content feedback is commonly used in extensive reading course,indirect feedback dominates in written assignments,providing students with opportunities for second thoughts and self-correction.For oral limited-response and open-ended questions,recasts are predominantly used to give students more time to reflect and reduce teacher talk,thereby mitigating anxiety and enhancing learning motivation.
基金National Key R&D Program of China under Grant No.2018YFB1801603 and No.2017YFF0206201National Sci⁃ence and Technology Major Project under Grant 2017ZX03001024,NSFC under Grant No.61801259 and Beijing National Research Center for Infor⁃mation Science and Technology(BNRist).
文摘A robust digital predistortion(DPD)technique utilizing negative feedback iteration is introduced for linearizing power amplifiers(PAs)in long term evolution(LTE)/5G systems.Different from the conventional direct learning and indirect learning structure,the proposed DPD suggests a two-step method to identify the predistortion.Firstly,a negative feedback based iteration is used to estimate the optimal DPD signal.Then the corresponding DPD parameters are extracted by forward modeling with the input signal and optimal DPD signal.The iteration can be applied to both single-band and dual-band PAs,which will achieve superior linear performance than the conventional direct learning DPD while having a relatively low computational complexity.The measurement is carried out on a broadband Doherty PA(DPA)with a 200 MHz bandwidth LTE signal at 2.1 GHz,and on a 5G DPA with two 10 MHz LTE signals at 3.4/3.6 GHz for validation in dual-band scenarios.
文摘Waveform control method was commonly adopted to reduce the spatter of CO2 arc welding and improve the weld formation. It certainly would reduce the self-regulation ability of arc due to the adoption of segmented constant current control which especially led to arc" blowout with the abrupt change oat" arc" length or downward welding. Therefore alterative wire-feed system based on arc voltage negative feedback was put forward to improve the .stability of arc" length in this paper. Double closed-loop and double fuzzy P1 regulation were adopted in this system. Fuzzy control of induced voltage was adopted in the inner-loop which improved the stability and fast response of wire-feed system. Fuzz)" control of arc" voltage negative feedback was used in the outer-loop whose output .served as the input of negative feedback regulation of inner-loop induced voltage. This method could remain arc" length and weld penetration unchan, ged on the basils of reducing spatter and improving formation and it was proved by downward welding tests.
基金supported by the Natural Science Foundation of Zhejiang Province(No.Z1110937)
文摘The design and fabrication of an ultra-broadband power amplifier based on a GaN HEMT, which operates in the frequency range from 3 to 8 GHz, is presented in this paper. A TGF2023-02 GaN HEMT chip from Tri Quint is adopted and modeled. A novel negative feedback structure is applied in the circuit. The measured results show that the amplifier module has a wide range frequency response that is almost consistent with those of simulation at frequencies from 3 to 6.5 GHz. The measured power gain is greater than 7 dB between 3 and 6.5 GHz.The saturated output power is 38.5 dBm under DC bias of Vds =D28 V, Vgs D =-3:5 V at the frequency of 5.5 GHz.
文摘A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.This proposed implementation relies on the tunability of current-steering MOS transistors operating in the triode region counteracting the concert deviation of resistor in the integrated circuit manufacturing technology in orde r that the group delay of Bessel active filter could be designed accurately.The amplifier is not only with voltage common-mode negative feedback,but also with current common-mode negative feedback,which will benefit for the stability of its D C operating point.0.75μs group delay fourth-order Bessel lowpass filter,whic h is synthesized according to passive doubly terminated RLC prototype lowpass filter,demonstrates better than -65dB THD using 100kHz,2.5V pp signal in Taiwan UMC 2P2M(2-poly,2-metal)5.0V,0.5μm CMOS technology.
文摘Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order intermodulation distortion(IM2 ), the third order intermodulation distortion(IM 3) and intercept point(IP 3) are deduced. With the aid of software Multisim, we simulate transistor common emitter amplifier, transistor common emitter amplifier with resistor in emitter, differential amplifier and differential amplifier with resistor between emitters. The simulational results and theoretical analyses are almost the same.
文摘In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10802043 and 10832006, Program for Science & Technology Innovation Talents in Universities of Henan under Grant No. 2009HASTIT033 and Key Disciplines of Shanghai municipality ($30104)
文摘Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that smafl RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and mmntenance of homeostasis. According to Michaelis-Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.
基金The National Natural Science Foundation of China(No.61306069)
文摘A 12-Gbit/s low-power,wide-bandwidh CMOS(complementary metal oxide semiconductor)dual negative feedback feed-forward common gate(DNFFCG)differential trans-impedance amplifier(TIA)is presented for the veryshort-reach(VSR)optoelectronic integrated circuit(OEIC)receiver.The dominant pole of the input node is shifted up to a high frequency,and thus the bandwidth of the CMOS DNFFCG TIA is improved.Besides,two negative feedback loops are used to reduce the input impedance and further increase the bandwidth.The proposed TIA was fabricated using TSMC 0.18 jxm CMOS technology.The whole circuit has a compact chip area,the core area of which is only 0.003 6 mm2.The power consumption is 14.6 mW excluding 2-stage differential buffers.The test results indicate that the 3 dB bandwidth of 9 GHz is achieved with a 1 8 V supply voltage and its trans-impedance gain is 49.2 dBH.The measured average equivalent input noise current density is 28.1 pA H z12.Under the same process conditions,the DNFFCG has better gain bandwidth product compared with those in the published papers.
文摘Background:Athletes have been shown to exhibit better balance compared to non-athletes(NON).However,few studies have investigated how the surface on which athletes train affects the strategies adopted to maintain balance.Two distinct athlete groups who experience different types of sport-specific balance training are stable surface athletes(SSA) such as basketball players and those who train on unstable surfaces(USA) such as surfers.The purpose of this study was to investigate the effects of training surface on dynamic balance in athletes compared to NON.Methods:Eight NON,eight SSA,and eight USA performed five 20-s trials in each of five experimental conditions including a static condition and four dynamic conditions in which the support surface translated in the anteroposterior(AP) or mediolateral(ML) planes using positive or negative feedback paradigms.Approximate entropy(Ap En) and root mean square distance(RMS) of the center of pressure(Co P) were calculated for the AP and ML directions.Four 3 × 5(group × condition) repeated measures ANOVAs were used to determine significant effects of group and condition on variables of interest.Results:USA exhibited smaller Ap En values than SSA in the AP signals while no significant differences were observed in the ML Co P signals.Generally,the negative feedback conditions were associated with significantly greater RMS values than the positive feedback conditions.Conclusion:USA exhibit unique postural strategies compared to SSA.These unique strategies seemingly exhibit a direction-specific attribute and may be associated with divergent motor control strategies.
文摘It is observed by in situ stain that LDH (1 5) ...nNAD + can probably enter the nucleopore and can be bound bound specifically with the genes that encode them. During the in vitro expression, the dilution of heart nuclear DNA fragments could enhance the expression activity of LDH/DNA and the amount of expressed LDH (1 5) is in proportion to the amount of dissociable LDH (1 5) on the LDH/DNA. With the integration of 14C Leu to the proteins, it is also observed that the addition of LDH (1 5) ...nNAD + can suppress the in vitro expression activity of LDH/DNA. AFM observation shows that the regulation sequence at the both ends of active genes may be bound with such active factors as proteins encoded by the genes which probably is the main molecular switch of gene expression and regulation we have been always searching for. Our work shows the prospective application of the combination of AFM and isotope labeling in the research of biological reaction.
基金supported by the Basic Science Research(NRF-2022R1A 2B5B02001266)Basic Research Laboratory(NRF-2022R1A4A 3024451)programs funded by the National Research Foundation of Korea(South Korea)the New Breeding Technologies Development Program(RS-2024-00322275)of the Rural Development Administration(South Korea).
文摘Plants exhibit an astonishing ability to regulate organ regeneration upon wounding.Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid(IAA),which is polar-transported to excised regions,where cell fate transition leads to root founder cell specification to induce de novo root regeneration.The regeneration capacity of plants has been utilized to develop in vitro tissue culture technologies.Here,we report that IAA accumulation near the wounded site of leaf explants is essential for callus formation on 2,4-dichlorophenoxyacetic acid(2,4-D)-rich callus-inducing medium(CIM).Notably,a high concentration of 2,4-D does not compensate for the action of IAA because of its limited efflux;rather,it lowers IAA biosynthesis via a negative feedback mechanism at an early stage of in vitro tissue culture,delaying callus initiation.The auxin negative feedback loop in CIM-cultured leaf explants is mediated by an auxin-inducible APETALA2 transcription factor,ENHANCER OF SHOOT REGENERATION 2(ESR2),along with its interacting partner HISTONE DEACETYLASE 6(HDA6).The ESR2–HDA6 complex binds directly to,and removes the H3ac mark from,the YUCCA1(YUC1),YUC7,and YUC9 loci,consequently repressing auxin biosynthesis and inhibiting cell fate transition on 2,4-D-rich CIM.These findings indicate that negative feedback regulation of auxin biosynthesis by ESR2 and HDA6 interferes with proper cell fate transition and callus initiation.
基金We thank Prof.Qiang Cai(College of Life Sciences,Wuhan University)and Prof.Zheng Yuan(School of Life Sciences and Biotechnology,Shanghai Jiao Tong University)for providing morphology data for the eg1-1 and eg2-1D mutants.This work was supported by grants from the National Key R&D Program of China(2022YFD1200100)STI2030-Major Projects(2023ZD0406802)the National Natural Science Foundation of China(no.92035301 and no.31771765).
文摘Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.In this study,we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures.Interestingly,we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7.We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs,thereby promoting the ubiquitination of OsJAZ1 by the SCF^(OsCOI1a/OsCOI1b) complex and degradation via the 26S proteasome.This process ultimately releases OsMYC2,a core transcriptional regulator in the JA signaling pathway,to activate or repress JA-responsive genes,thereby maintaining normal plant(spikelet)development.However,in the osprmt6a-1 mutant,reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs.As a result,OsJAZ1 proteins become more stable,repressing JA responses,thus causing the formation of abnormal spikelet structures.Moreover,we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner,thereby establishing a negative feedback loop to balance JA signaling.We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures.Collectively,our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
文摘Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, ELL1, EIN2, ETR2, EBFI/EBF2, and ETPI/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/ EIL1 act as a convergence point in the ethylene-initiated signaling network.
基金This work was partly supported by the National Science Foundation.
文摘Hippo signaling plays a crucial role in growth control and tumor suppression by regulating cell proliferation,apoptosis,and differentiation.How Hippo signaling is regulated has been under extensive investigation.Over the past three years,an increasing amount of data have supported a model of actin cytoskeleton blocking Hippo signaling activity to allow nuclear accumulation of a downstream effector,Yki/Yap/Taz.On the other hand,Hippo signaling negatively regulates actin cytoskeleton organization.This review p rovides insight on the mutual regulatory mechanisms between Hippo signaling and actin cytoskeleton for a tight control of cell behaviors during animal development,and points out outstanding questions for further investigations.
基金This work was supported by grants from National Natural Science Foundation of China (No. 30971312) and the Key Project of Beijing Municipal Education Commission Sci-Tech Development Program (No. KZ201110025028).
文摘apamvcin was first isolated from a strain of Sreptomyces hygroscopicus in the early 1970s froma soil sample taken on Easter Island. Because the antiproliferative effects of rapamycin on yeast cell, as well as B and T lymphocytes, it was first identified as an antimicrobial agent with potent immunosuppressive activity and has been used in antirejection therapy.
基金Project supported by the Provincial and Ministerial Industry-Academia Cooperation Project of China(No.2009A090100019)
文摘This paper presents post-layout simulated results of an analog baseband chain for mobile and multimedia applications in a 0.13-μm SiGe BiCMOS process.A programmable 7th-order Chebyshev low pass filter with a calibration circuit is used in the analog baseband chain,and the programmable bandwidth is 1.8/2.5/3/3.5/4 MHz with an attenuation of 26/62 dB at offsets of 1.25/4 MHz.The baseband programmable gain amplifier can achieve a linear 40-dB gain range with 0.5-dB steps.Design trade-offs are carefully considered in designing the baseband circuit,and an automatic calibration circuit is used to achieve the bandwidth accuracy of 2%.A DC offset cancellation loop is also introduced to remove the offset from the layout and self-mixing,and the remaining offset voltage is only 1.87 mV.Implemented in a 0.13-μm SiGe technology with a 0.6-mm2 die size,this baseband achieves IIP3 of 23.16 dBm and dissipates 22.4 mA under a 2.5-V supply.
文摘A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18μm CMOS technology. The active area occupied by the filter with test buffer is only 200 × 170 μm^2. The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range.