A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion expe...Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion experiments to heat the plasma.The collisions between the fast negative ions and neutral background gas result in a significant number of high-energy positive ions being produced in the acceleration area,and for the high-power long-pulse operation of NBI systems,this acceleration of positive ions back to the ion source creates heat load and material sputtering on the source backplate.This difficulty cannot be ignored,with the neutral gas density in the acceleration region having a significant impact on the flux density of the backstreaming positive ions.In the work reported here,the pressure gradient in the acceleration region was estimated using an ionization gauge and a straightforward 1D computation,and it was found that once gas traveled through the acceleration region,the pressure dropped by nearly one order of magnitude,with the largest pressure drop occurring at the plasma grid.The computation also revealed that the pressure drop in the grid gaps was substantially smaller than that in the grid apertures.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma ...In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma Physics, Chinese Academy of Sciences(ASIPP). Its negative ion source can be equipped with single or double RF drivers. There is a plasma expansion chamber with depth of 19 mm and an enhanced filter field. A three electrodes negative ion accelerator was employed to extract and accelerate the negative ions, which are plasma grid,extraction grid and ground grid. And there are several diagnostic tools for the plasma and beam parameters measurement. The characteristics of plasma generation, negative ion production and extraction were studied on the test equipment. The negative ion beam was extracted from the RF driven negative ion source for the first time. The detailed structure and main results are presented in this article.展开更多
Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a pla...Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.展开更多
Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows...Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows that the materials can produce quite a few free radicals as·O^-_2 no matter whether they are under illumination of ultraviolet radiation or under visible light radiation,or under no light radiation, demonstrating semiconductor oxide can be catalysed under the visible light radiation.At the same time the result shows there is direct relation between the number of free radicals and of the negative ion produced by the materials,which meant that during photo-catalyzed and redox process of valency-variable rare earth elements free radicals translate into negative ions. A circular model is presented involving circulating change of valency-variable rare earth elements and water and oxygen absorbed on the surface of materials under the condition of photocatalysis.展开更多
In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfacta...In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfactant as dispersants by sand milling.Under the influence of different dispersants,the negative ions releasing amount of functional wall fabrics,the milling process and the storage stability of nano tourmaline powder dispersion were discussed.The results showed that nano tourmaline powder dispersion achieved the smallest average diameter of 44 nm and had best storage stability that the average diameter maintained below 200 nm in 17 days when the addition amount of dispersant was 20 percent of the tourmaline powders’weight.What is more,the quantity of negative ion releasing achieved 6500 ion/cm3 when addition amount of dispersant was 30 percent.This technique could be used to strengthen productivity of nano tourmaline powder dispersion.展开更多
In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the be...In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.展开更多
In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion ...In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV.展开更多
We investigate the angular distribution of the transmitted 18keV negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10 μm in length. Elastic scattering ions and inelastic scattering ions are obt...We investigate the angular distribution of the transmitted 18keV negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10 μm in length. Elastic scattering ions and inelastic scattering ions are obtained simultaneously. The experimental result is partially consistent with the guiding effect. We can qualitatively explain our experimental result through a dynamic process.展开更多
The photodetachment of a hetero-nuclear diatomic molecular negative ion is studied by using a two-centre model. An analytic formula is presented for the electron flux distribution of a heteronuclear diatomic molecular...The photodetachment of a hetero-nuclear diatomic molecular negative ion is studied by using a two-centre model. An analytic formula is presented for the electron flux distribution of a heteronuclear diatomic molecular negative ion. Taking HF- as an example, we calculated the electron flux distributions of this ion for various detached electron energies. The results show that the electron flux distributions exhibit oscillatory structures, which are caused by the interference effect between the two nuclei. Besides, the laser light polarization also has a great influence on the electron flux distribution. The oscillation amplitude is the largest when the laser polarization is parallel to the z-axis; when the laser polarization is perpendicular to the z-axis, the oscillation almost vanishes. This study provides a new understanding of the photodetachment of a heteronuclear diatomic molecular negative ion.展开更多
Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. T...Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.展开更多
In this study, by employing a local fluid theory for warm plasma containing negative ions, an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or rel...In this study, by employing a local fluid theory for warm plasma containing negative ions, an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions was investigated. It is found that the growth rate of the lower-hybrid-drift instability (LHDI) can be controlled by appropriate selection of the propagation direction, the wave number and the relative population of the negative ions.展开更多
The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma cons...The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev–Petviashvili(K–P) equation, threedimensional(3D) Burgers equation, and K–P–Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave(DIASW). The K–P equation predictes the existences of stationary small amplitude solitary wave,whereas the K–P–Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.展开更多
In May 2018,the primetime news casted a shocking report saying that radon concentration on a certain model of bed mattress found to be as high as 2200 Bq/m3.After a humble,the Nuclear Safety and Security Commission(NS...In May 2018,the primetime news casted a shocking report saying that radon concentration on a certain model of bed mattress found to be as high as 2200 Bq/m3.After a humble,the Nuclear Safety and Security Commission(NSSC)of Korea confirmed that significant amount of thoron gas is emanated from several mattress models marketed by a company claiming beneficial health effects of negative ions.Laboratory analysis showed that some internal fabric sheets of those mattresses contain high concentration of Th-232.It was revealed that the manufacture treated the material with so-called‘negative ion powder’procured from the market and NSSC found that its radioactive content is the monazite powder.Although measurements with reliable instruments resulted in somewhat lower values,the tentative but conservative estimates of doses to the users are still remarkable,ranging from a few to 14 mSv a year.Most of the affected models have been marketed from 2010 but earlier models,with lower thorium content,were supplied from 2006.As many as 88,000 mattresses have been produced.The manufacturer with help of the government,recalled all the affected models and separated the radioactive internals.A large amount of waste is waiting for the government decision on disposal method.Similar problems were identified in other consumer products including latex mattresses and pillows imported,hot pads,and several models of sanitary or health-aid goods.These episodes called for revisiting NORM control strategy in Korea.展开更多
Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions a...Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic field contributes to dropping the wave frequency a little.展开更多
Current loss without an obvious impedance collapse in the magnetically insulated coaxial diode (MICD) is studied through experiment and particle-in-cell (PIC) simulation when the guiding magnetic field is strong e...Current loss without an obvious impedance collapse in the magnetically insulated coaxial diode (MICD) is studied through experiment and particle-in-cell (PIC) simulation when the guiding magnetic field is strong enough. Cathode nega- tive ions are clarified to be the predominant reason for it. Theoretical analysis and simulation both indicate that the velocity of the negative ion reaches up to 1 cm/ns due to the space potential between the anode and cathode gap (A-C gap). Accord- ingly, instead of the reverse current loss and the parasitic current loss, the negative ion loss appears during the whole pulse. The negative ion current loss is determined by its ionization production rate. It increases with diode voltage increasing. The smaller space charge effect caused by the beam thickening and the weaker radial restriction both promote the negative ion production under a lower magnetic field. Therefore, as the magnetic field increases, the current loss gradually decreases until the beam thickening nearly stops.展开更多
The ground and three low-excited states of the positronium negative ion Confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obta...The ground and three low-excited states of the positronium negative ion Confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy wlues.展开更多
The ground and three low-excited states of the hydrogen negative ion confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtaine...The ground and three low-excited states of the hydrogen negative ion confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values.展开更多
Negative ion-beam-induced luminescence (IBIL) measurements of a pure LiF crystal using 20 keV are performed to monitor the formation and annihilation of luminescence centers during ion irradiation. Several emission ba...Negative ion-beam-induced luminescence (IBIL) measurements of a pure LiF crystal using 20 keV are performed to monitor the formation and annihilation of luminescence centers during ion irradiation. Several emission bands are observed in the IBIL spectra and the evolvement mechanisms of the corresponding centers are identified. The difference between the IBIL measurements using positive ions and negative ions is that the intensities of luminescence centers can reach the maxima at lower fluences under negative-ion irradiation due to free charge accumulation.展开更多
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC2202700).
文摘Neutral beam injection(NBI)systems based on negative hydrogen ion sources-rather than the positive ion sources that have typically been used to date-will be used in the future magnetically confined nuclear fusion experiments to heat the plasma.The collisions between the fast negative ions and neutral background gas result in a significant number of high-energy positive ions being produced in the acceleration area,and for the high-power long-pulse operation of NBI systems,this acceleration of positive ions back to the ion source creates heat load and material sputtering on the source backplate.This difficulty cannot be ignored,with the neutral gas density in the acceleration region having a significant impact on the flux density of the backstreaming positive ions.In the work reported here,the pressure gradient in the acceleration region was estimated using an ionization gauge and a straightforward 1D computation,and it was found that once gas traveled through the acceleration region,the pressure dropped by nearly one order of magnitude,with the largest pressure drop occurring at the plasma grid.The computation also revealed that the pressure drop in the grid gaps was substantially smaller than that in the grid apertures.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
基金supported by the Key Program of Research and Development of Hefei Science Center,CAS(No.2016HSCKPRD002)National Natural Science Foundation of China(Nos.11505224,11505225,11575240,11675215,11675216)
文摘In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma Physics, Chinese Academy of Sciences(ASIPP). Its negative ion source can be equipped with single or double RF drivers. There is a plasma expansion chamber with depth of 19 mm and an enhanced filter field. A three electrodes negative ion accelerator was employed to extract and accelerate the negative ions, which are plasma grid,extraction grid and ground grid. And there are several diagnostic tools for the plasma and beam parameters measurement. The characteristics of plasma generation, negative ion production and extraction were studied on the test equipment. The negative ion beam was extracted from the RF driven negative ion source for the first time. The detailed structure and main results are presented in this article.
文摘Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.
文摘Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows that the materials can produce quite a few free radicals as·O^-_2 no matter whether they are under illumination of ultraviolet radiation or under visible light radiation,or under no light radiation, demonstrating semiconductor oxide can be catalysed under the visible light radiation.At the same time the result shows there is direct relation between the number of free radicals and of the negative ion produced by the materials,which meant that during photo-catalyzed and redox process of valency-variable rare earth elements free radicals translate into negative ions. A circular model is presented involving circulating change of valency-variable rare earth elements and water and oxygen absorbed on the surface of materials under the condition of photocatalysis.
文摘In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfactant as dispersants by sand milling.Under the influence of different dispersants,the negative ions releasing amount of functional wall fabrics,the milling process and the storage stability of nano tourmaline powder dispersion were discussed.The results showed that nano tourmaline powder dispersion achieved the smallest average diameter of 44 nm and had best storage stability that the average diameter maintained below 200 nm in 17 days when the addition amount of dispersant was 20 percent of the tourmaline powders’weight.What is more,the quantity of negative ion releasing achieved 6500 ion/cm3 when addition amount of dispersant was 30 percent.This technique could be used to strengthen productivity of nano tourmaline powder dispersion.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)
文摘In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.
基金supported by National Natural Science Foundation of China(Nos.11505224,11575240,11405207)the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB101001,2013GB101002,2013GB101003)+1 种基金International Science and Technology Cooperation Program of China(No.2014DFG61950)Foundation of ASIPP(No.DSJJ-14-JC07)
文摘In order to support the design, manufacture and commissioning of the negative- ion-based neutral beam injection (NBI) system for the Chinese Fusion Engineering Test Reactor (CFETR), the Hefei utility negative ion test equipment with RF source (HUNTER) was proposed at ASIPP. A prototype negative ion source will be developed at first. The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI. But instead of the filament-arc driver, an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation. A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons. Besides, an ITER-like extraction system is applied inside the accelerator, where the negative ion beam is extracted and accelerated up to 50 kV.
基金Project supported by the National Natural Science Foundation of China(Grant No.10775063)
文摘We investigate the angular distribution of the transmitted 18keV negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10 μm in length. Elastic scattering ions and inelastic scattering ions are obtained simultaneously. The experimental result is partially consistent with the guiding effect. We can qualitatively explain our experimental result through a dynamic process.
基金supported by the National Natural Science Foundation of China (Grant No. 10604045)the University Science and Technology Planning Program of Shandong Province of China (Grant No. J09LA02)
文摘The photodetachment of a hetero-nuclear diatomic molecular negative ion is studied by using a two-centre model. An analytic formula is presented for the electron flux distribution of a heteronuclear diatomic molecular negative ion. Taking HF- as an example, we calculated the electron flux distributions of this ion for various detached electron energies. The results show that the electron flux distributions exhibit oscillatory structures, which are caused by the interference effect between the two nuclei. Besides, the laser light polarization also has a great influence on the electron flux distribution. The oscillation amplitude is the largest when the laser polarization is parallel to the z-axis; when the laser polarization is perpendicular to the z-axis, the oscillation almost vanishes. This study provides a new understanding of the photodetachment of a heteronuclear diatomic molecular negative ion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874133)
文摘Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 1^10^+, 1^1(-1)^+ and 1^1(-2)6+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 〈 γ 〈 4 and 0.02 〈 γ 〈 0.05, in which the 1^1(-1)6+ and 1^1(-2)^+ states start to become bound, respectively, are also determined based on the calculated electron detachment energies.
基金supported by the National Natural Science Foundation of China(Nos.40336052,10375063)
文摘In this study, by employing a local fluid theory for warm plasma containing negative ions, an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions was investigated. It is found that the growth rate of the lower-hybrid-drift instability (LHDI) can be controlled by appropriate selection of the propagation direction, the wave number and the relative population of the negative ions.
文摘The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev–Petviashvili(K–P) equation, threedimensional(3D) Burgers equation, and K–P–Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave(DIASW). The K–P equation predictes the existences of stationary small amplitude solitary wave,whereas the K–P–Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
文摘In May 2018,the primetime news casted a shocking report saying that radon concentration on a certain model of bed mattress found to be as high as 2200 Bq/m3.After a humble,the Nuclear Safety and Security Commission(NSSC)of Korea confirmed that significant amount of thoron gas is emanated from several mattress models marketed by a company claiming beneficial health effects of negative ions.Laboratory analysis showed that some internal fabric sheets of those mattresses contain high concentration of Th-232.It was revealed that the manufacture treated the material with so-called‘negative ion powder’procured from the market and NSSC found that its radioactive content is the monazite powder.Although measurements with reliable instruments resulted in somewhat lower values,the tentative but conservative estimates of doses to the users are still remarkable,ranging from a few to 14 mSv a year.Most of the affected models have been marketed from 2010 but earlier models,with lower thorium content,were supplied from 2006.As many as 88,000 mattresses have been produced.The manufacturer with help of the government,recalled all the affected models and separated the radioactive internals.A large amount of waste is waiting for the government decision on disposal method.Similar problems were identified in other consumer products including latex mattresses and pillows imported,hot pads,and several models of sanitary or health-aid goods.These episodes called for revisiting NORM control strategy in Korea.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10375063 and 40336052
文摘Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic field contributes to dropping the wave frequency a little.
文摘Current loss without an obvious impedance collapse in the magnetically insulated coaxial diode (MICD) is studied through experiment and particle-in-cell (PIC) simulation when the guiding magnetic field is strong enough. Cathode nega- tive ions are clarified to be the predominant reason for it. Theoretical analysis and simulation both indicate that the velocity of the negative ion reaches up to 1 cm/ns due to the space potential between the anode and cathode gap (A-C gap). Accord- ingly, instead of the reverse current loss and the parasitic current loss, the negative ion loss appears during the whole pulse. The negative ion current loss is determined by its ionization production rate. It increases with diode voltage increasing. The smaller space charge effect caused by the beam thickening and the weaker radial restriction both promote the negative ion production under a lower magnetic field. Therefore, as the magnetic field increases, the current loss gradually decreases until the beam thickening nearly stops.
基金*The project supported by National Natural Science Foundation of China under Grant No. 10475021 and the Natural Science Foundation of Guangdong Province of China under Grant No. 04009519
文摘The ground and three low-excited states of the positronium negative ion Confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy wlues.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475021 and the Natural Science Foundation of Guangdong Province under Grant No. 04009519
文摘The ground and three low-excited states of the hydrogen negative ion confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values.
文摘Negative ion-beam-induced luminescence (IBIL) measurements of a pure LiF crystal using 20 keV are performed to monitor the formation and annihilation of luminescence centers during ion irradiation. Several emission bands are observed in the IBIL spectra and the evolvement mechanisms of the corresponding centers are identified. The difference between the IBIL measurements using positive ions and negative ions is that the intensities of luminescence centers can reach the maxima at lower fluences under negative-ion irradiation due to free charge accumulation.