For a given T>0,we prove,under the global ARS-condition and using the Nehari manifold method,the existence of a T-periodic solution having the W-symmetry introduced in[21],for the hamiltonian system z+V'(z)=0,z...For a given T>0,we prove,under the global ARS-condition and using the Nehari manifold method,the existence of a T-periodic solution having the W-symmetry introduced in[21],for the hamiltonian system z+V'(z)=0,z∈R^N,N∈N^*.Moreover,such a solution is shown to have T as a minimal period without relaying to any index theory.A multiplicity result is also proved under the same condition.展开更多
We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real val...We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.展开更多
In this paper, by using the Nehari manifold and variational methods, we study the existence and multiplicity of positive solutions for a multi-singular quasilinear elliptic problem with critical growth terms in bounde...In this paper, by using the Nehari manifold and variational methods, we study the existence and multiplicity of positive solutions for a multi-singular quasilinear elliptic problem with critical growth terms in bounded domains. We prove that the equation has at least two positive solutions when the parameters A belongs to a certain subset of JR.展开更多
We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positiv...We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.展开更多
文摘For a given T>0,we prove,under the global ARS-condition and using the Nehari manifold method,the existence of a T-periodic solution having the W-symmetry introduced in[21],for the hamiltonian system z+V'(z)=0,z∈R^N,N∈N^*.Moreover,such a solution is shown to have T as a minimal period without relaying to any index theory.A multiplicity result is also proved under the same condition.
基金Supported by NSFC(Grant No.11571370)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120162110021)of China
文摘We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.
文摘In this paper, by using the Nehari manifold and variational methods, we study the existence and multiplicity of positive solutions for a multi-singular quasilinear elliptic problem with critical growth terms in bounded domains. We prove that the equation has at least two positive solutions when the parameters A belongs to a certain subset of JR.
基金supported by the NNSF of China (12071413, 12111530282)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH。
文摘We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.