期刊文献+
共找到272篇文章
< 1 2 14 >
每页显示 20 50 100
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
1
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine Nearest neighbor classifier Principal component analysis.
下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
2
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K Nearest neighbors Stochastic Gradient Descent classifier Decision Tree
下载PDF
A computer aided detection framework for mammographic images using fisher linear discriminant and nearest neighbor classifier
3
作者 Memuna Sarfraz Fadi Abu-Amara Ikhlas Abdel-Qader 《Journal of Biomedical Science and Engineering》 2012年第6期323-329,共7页
Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified... Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified as the inability of the radiologist to detect the abnormalities due to several reasons such as poor image quality, image noise, or eye fatigue. This paper presents a framework for a computer aided detection system that integrates Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD), and Nearest Neighbor Classifier (KNN) algorithms for the detection of abnormalities in mammograms. Using normal and abnormal mammograms from the MIAS database, the integrated algorithm achieved 93.06% classification accuracy. Also in this paper, we present an analysis of the integrated algorithm’s parameters and suggest selection criteria. 展开更多
关键词 Principal COMPONENT Analysis FISHER Linear DISCRIMINANT Nearest neighbor classifier
下载PDF
A Logarithmic-Complexity Algorithm for Nearest Neighbor Classification Using Layered Range Trees
4
作者 Ibrahim Al-Bluwi Ashraf Elnagar 《Intelligent Information Management》 2012年第2期39-43,共5页
Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The pr... Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in , where k is a very small constant when compared with the dataset size n and d is the number of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 Nearest neighbor classifier RANGE Trees Logarithmic Order
下载PDF
An Approach to Speech Emotion Classification Using k-NN and SVMs
5
作者 Disne SIVALINGAM 《Instrumentation》 2021年第3期36-45,共10页
The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emo... The interaction between humans and machines has become an issue of concern in recent years.Besides facial expressions or gestures,speech has been evidenced as one of the foremost promising modalities for automatic emotion recognition.Effective computing means to support HCI(Human-Computer Interaction)at a psychological level,allowing PCs to adjust their reactions as per human requirements.Therefore,the recognition of emotion is pivotal in High-level interactions.Each Emotion has distinctive properties that form us to recognize them.The acoustic signal produced for identical expression or sentence changes is essentially a direct result of biophysical changes,(for example,the stress instigated narrowing of the larynx)set off by emotions.This connection between acoustic cues and emotions made Speech Emotion Recognition one of the moving subjects of the emotive computing area.The most motivation behind a Speech Emotion Recognition algorithm is to observe the emotional condition of a speaker from recorded Speech signals.The results from the application of k-NN and OVA-SVM for MFCC features without and with a feature selection approach are presented in this research.The MFCC features from the audio signal were initially extracted to characterize the properties of emotional speech.Secondly,nine basic statistical measures were calculated from MFCC and 117-dimensional features were consequently obtained to train the classifiers for seven different classes(Anger,Happiness,Disgust,Fear,Sadness,Disgust,Boredom and Neutral)of emotions.Next,Classification was done in four steps.First,all the 117-features are classified using both classifiers.Second,the best classifier was found and then features were scaled to[-1,1]and classified.In the third step,the with or without feature scaling which gives better performance was derived from the results of the second step and the classification was done for each of the basic statistical measures separately.Finally,in the fourth step,the combination of statistical measures which gives better performance was derived using the forward feature selection method Experiments were carried out using k-NN with different k values and a linear OVA-based SVM classifier with different optimal values.Berlin emotional speech database for the German language was utilized for testing the planned methodology and recognition rates as high as 60%accomplished for the recognition of emotion from voice signal for the set of statistical measures(median,maximum,mean,Inter-quartile range,skewness).OVA-SVM performs better than k-NN and the use of the feature selection technique gives a high rate. 展开更多
关键词 Mel Frequency Cepstral Coefficients(MFCC) Fast Fourier Transformation(FFT) Discrete Cosine Transformation(DCT) k Nearest neighbors(k-nn) Support Vector Machine(SVM) One-Vs-All(OVA)
下载PDF
基于TBM的自适应模糊k-NN分类器 被引量:1
6
作者 刘邱云 付雪峰 吴根秀 《计算机工程》 CAS CSCD 北大核心 2009年第16期183-185,188,共4页
针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小... 针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小化误差函数,以实现参数的自适应学习。实验结果表明,该分类器误分类率低、鲁棒性强。 展开更多
关键词 可传递信度模型 自适应 k-nn分类器 pignistic概率 梯度下降
下载PDF
基于剪枝加权k-NN算法的雷达电磁行为识别 被引量:1
7
作者 程远国 唐文杰 满欣 《海军工程大学学报》 CAS 北大核心 2020年第3期7-11,共5页
为了更好地实施电子干扰和欺骗,针对目标雷达电磁行为识别问题,提出了一种新的算法。首先,给出了雷达电磁行为的形式化表述,并在此基础上将各项属性参数进行预处理;然后,通过改进的k-最近邻分类算法(k-nearest-neighbor classifier,k-NN... 为了更好地实施电子干扰和欺骗,针对目标雷达电磁行为识别问题,提出了一种新的算法。首先,给出了雷达电磁行为的形式化表述,并在此基础上将各项属性参数进行预处理;然后,通过改进的k-最近邻分类算法(k-nearest-neighbor classifier,k-NN)对数据进行处理,从而对未知的雷达电磁行为进行识别。实验结果表明:改进的算法引入剪枝加权策略可加强其分类识别能力,在分类准确率和时间效率上较原算法有一定的改善,对于雷达电磁行为的识别是有效可行的。 展开更多
关键词 雷达电磁行为 k-最近邻分类算法 分类识别
下载PDF
Monitoring nearest neighbor queries with cache strategies 被引量:1
8
作者 PAN Peng LU Yan-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期529-537,共9页
The problem of continuously monitoring multiple K-nearest neighbor (K-NN) queries with dynamic object and query dataset is valuable for many location-based applications. A practical method is to partition the data spa... The problem of continuously monitoring multiple K-nearest neighbor (K-NN) queries with dynamic object and query dataset is valuable for many location-based applications. A practical method is to partition the data space into grid cells, with both object and query table being indexed by this grid structure, while solving the problem by periodically joining cells of objects with queries having their influence regions intersecting the cells. In the worst case, all cells of objects will be accessed once. Object and query cache strategies are proposed to further reduce the I/O cost. With object cache strategy, queries remaining static in current processing cycle seldom need I/O cost, they can be returned quickly. The main I/O cost comes from moving queries, the query cache strategy is used to restrict their search-regions, which uses current results of queries in the main memory buffer. The queries can share not only the accessing of object pages, but also their influence regions. Theoretical analysis of the expected I/O cost is presented, with the I/O cost being about 40% that of the SEA-CNN method in the experiment results. 展开更多
关键词 K-nearest neighbors k-nns) Continuous query Object cache Query cache
下载PDF
Roman Urdu News Headline Classification Empowered with Machine Learning 被引量:2
9
作者 Rizwan Ali Naqvi Muhammad Adnan Khan +3 位作者 Nauman Malik Shazia Saqib Tahir Alyas Dildar Hussain 《Computers, Materials & Continua》 SCIE EI 2020年第11期1221-1236,共16页
Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent.Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for ... Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent.Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for writing.The communication using the Roman characters,which are used in the script of Urdu language on social media,is now considered the most typical standard of communication in an Indian landmass that makes it an expensive information supply.English Text classification is a solved problem but there have been only a few efforts to examine the rich information supply of Roman Urdu in the past.This is due to the numerous complexities involved in the processing of Roman Urdu data.The complexities associated with Roman Urdu include the non-availability of the tagged corpus,lack of a set of rules,and lack of standardized spellings.A large amount of Roman Urdu news data is available on mainstream news websites and social media websites like Facebook,Twitter but meaningful information can only be extracted if data is in a structured format.We have developed a Roman Urdu news headline classifier,which will help to classify news into relevant categories on which further analysis and modeling can be done.The author of this research aims to develop the Roman Urdu news classifier,which will classify the news into five categories(health,business,technology,sports,international).First,we will develop the news dataset using scraping tools and then after preprocessing,we will compare the results of different machine learning algorithms like Logistic Regression(LR),Multinomial Naïve Bayes(MNB),Long short term memory(LSTM),and Convolutional Neural Network(CNN).After this,we will use a phonetic algorithm to control lexical variation and test news from different websites.The preliminary results suggest that a more accurate classification can be accomplished by monitoring noise inside data and by classifying the news.After applying above mentioned different machine learning algorithms,results have shown that Multinomial Naïve Bayes classifier is giving the best accuracy of 90.17%which is due to the noise lexical variation. 展开更多
关键词 Roman urdu news headline classification long short term memory recurrent neural network logistic regression multinomial naïve Bayes random forest k neighbor gradient boosting classifier
下载PDF
Using FCM to Select Samples in Semi-Supervised Classification
10
作者 Chao Zhang Jian-Mei Cheng Liang-Zhong Yi 《Journal of Electronic Science and Technology》 CAS 2012年第2期130-134,共5页
For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be... For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be increased. In this paper, we use fuzzy c-means (FCM) clustering to take out some samples that are useless, and extract the intersection between the original training set and the cluster after using FCM clustering. The intersection between every class and cluster is reliable samples which we are looking for. The experiment result demonstrates that the superiority of the proposed algorithm is remarkable. 展开更多
关键词 Fuzzy c-means clustering fuzzy k-nearest neighbor classifier instance selection.
下载PDF
Shape classification based on singular value decomposition transform
11
作者 SHAABAN Zyad ARIF Thawar BABA Sami KREKOR Lala 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期246-252,共7页
In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a bla... In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a black and white image. The squared Euclidean distance transform on binary image was applied to extract the boundary image of the shape. SVD transform features were extracted from the the boundary of the object shapes. In this paper, the proposed classification system based on SVD transform feature extraction method was compared with classifier based on moment invariants using nearest neighbour classifier. The experimental results showed the advantage of our proposed classification system. 展开更多
关键词 奇异值分解 形状分类 分解变换 分类系统 欧氏距离变换 特征提取 黑白图像 近邻分类
下载PDF
引入激活扩散的类分布关系近邻分类器
12
作者 董飒 欧阳若川 +4 位作者 徐海啸 刘杰 刘大有 李婷婷 王鑫禄 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期915-922,共8页
针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同... 针对同质性关系分类器基于一阶Markov假设简化处理的局限性,在类分布关系近邻分类器构建类向量和参考向量时,引入局部图排序激活扩散方法,并结合松弛标注的协作推理方法,通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同质性,从而降低分类错误率.对比实验结果表明,该方法扩大了待分类节点的邻域,在网络数据上分类精度较好. 展开更多
关键词 人工智能 网络数据分类 激活扩散 类分布关系近邻分类器 协作推理
下载PDF
面向投票类AI分类器的零冗余存储器容错设计
13
作者 柳姗姗 金辉 +6 位作者 刘思佳 王天琦 周彬 马瑶 王碧 常亮 周军 《集成电路与嵌入式系统》 2024年第6期1-8,共8页
投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,... 投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,其存储电路需要进行容错设计。现有存储器容错技术通常采用错误纠正码,但面向AI系统,其引入的冗余会进一步加剧本就面临挑战的存储负担。因此本文提出一种零冗余存储器容错技术,采用纠正错误对分类结果的负面影响而非纠正错误本身的设计思想,利用错误造成的数据翻转现象恢复出正确的分类结果。通过对k邻近算法进行实验验证,本文提出的技术在不引入任何冗余的情况下可达到近乎完全的容错能力,且相比于现有技术,节省了大量硬件开销。 展开更多
关键词 存储器 软错误 人工智能 分类器 错误纠正码 k邻近算法
下载PDF
改进的邻近加权合成过采样技术
14
作者 邢胜 王晓兰 +3 位作者 沈家星 朱美玲 曹永青 何玉林 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第6期748-755,共8页
针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(i... 针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(improved proximity weighted synthetic oversampling technique,IProWSyn).改变权重的计算策略,引入底数为(0,1]的普通指数函数,通过动态改变底数令权重覆盖更大范围的搜索空间,进而找到更优的权重.将IProWSyn、ASN-SMOTE和ProWSyn应用在非平衡数据集ada、ecoli1、glass1、haberman、Pima和yeast1上,再使用k近邻(k-nearest neighbors,kNN)分类器和神经网络分类器检验方法的有效性.实验结果表明,在多数数据集上IProWSyn的F1、几何平均值(geometric mean,G-mean)和曲线下面积(area under curve,AUC)指标性能都高于其他过采样方法.IProWSyn过采样技术在这些数据集的综合分类效果更好,有更好的泛化表现. 展开更多
关键词 人工智能 非平衡数据 邻近加权合成过采样技术 过采样方法 K近邻分类器 神经网络
下载PDF
基于原型优化方法的分类器设计
15
作者 柳新强 徐欢 王栋 《微型电脑应用》 2024年第8期1-3,共3页
常规分类器如k近邻、支持向量机等已经被广泛使用,但在大数据时代背景下,较多的训练量会大幅度降低分类器的训练效率和准确率。为了解决该问题,利用原型优化方法对已有训练数据进行筛选压缩,滤除大量冗余数据,将压缩后的数据集作为原型... 常规分类器如k近邻、支持向量机等已经被广泛使用,但在大数据时代背景下,较多的训练量会大幅度降低分类器的训练效率和准确率。为了解决该问题,利用原型优化方法对已有训练数据进行筛选压缩,滤除大量冗余数据,将压缩后的数据集作为原型来训练分类器,提高训练效率和分类准确率。在已有方法基础上做出改进,设计新的基于原型优化方法的分类器,可以大幅度减小训练量,并保证分类准确率,测试结果验证了所提方法的有效性。 展开更多
关键词 原型优化 分类器 K近邻 支持向量机
下载PDF
基于逻辑回归的近邻分类耦合算法在医学骨科分类应用 被引量:1
16
作者 王宣谕 《现代信息科技》 2024年第11期158-162,共5页
随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归... 随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归耦合算法来进行医学方面的骨科分类,通过双算法准确度判断的耦合结果进行进一步判断,丰富算法的计算维度,进一步提高了分类准确率的精度。 展开更多
关键词 最近邻分类器 耦合算法 生物特征
下载PDF
基于虚拟样本生成的分子水平汽油使用过程碳排放建模研究
17
作者 宋建 崔晨 +3 位作者 郭莘 田华宇 韩璐 周祥 《石油炼制与化工》 CAS CSCD 北大核心 2024年第10期24-31,共8页
在碳达峰、碳中和的战略背景下,汽油作为高碳排放行列的一员,面临着CO_(2)减排的挑战。基于气相色谱得到的汽油组成数据和通过新欧洲驾驶循环得到的汽油CO_(2)排放量数据,按照PONA组成、碳原子数和取代基个数对汽油组分进行分类整理,采... 在碳达峰、碳中和的战略背景下,汽油作为高碳排放行列的一员,面临着CO_(2)减排的挑战。基于气相色谱得到的汽油组成数据和通过新欧洲驾驶循环得到的汽油CO_(2)排放量数据,按照PONA组成、碳原子数和取代基个数对汽油组分进行分类整理,采用层次聚类方法对汽油组成数据进行聚类,并按聚类结果划分训练集和测试集,建立了燃油汽车行驶每千米CO_(2)排放量的先验模型,旨在为生产低碳排放汽油提供数据支撑。由于数据样本范围较小且比较集中,先验模型在预测CO_(2)排放时适用性较差,因此提出基于半径近邻分类的多分布整体趋势扩散技术(RNC-MD-MTD)并以此方法生成虚拟样本。结果表明,随着RNC-MD-MTD方法生成的虚拟样本加入,模型的预测精度得到了有效提升,证明了该方法的有效性,最终建立的燃油汽车行驶每千米CO_(2)排放预测模型的决定系数为0.98,平均绝对百分比误差为0.29%,均方根误差为792.6 mg/km。 展开更多
关键词 汽油组分 CO_(2)排放 虚拟样本 半径近邻分类
下载PDF
Nearest-neighbor classifier motivated marginal discriminant projections for face recognition 被引量:4
18
作者 Pu HUANG Zhenmin TANG +1 位作者 Caikou CHEN Xintian CHENG 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第4期419-428,共10页
Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intri... Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intrinsic and penalty graphs. In this paper, we propose a novel method called nearest-neighbor (NN) classifier motivated marginal discriminant projections (NN-MDP). Motivated by the NN classifier, NN-MDP seeks a few projection vectors to prevent data samples from being wrongly categorized. Like MFA, NN-MDP can characterize the compactness and separability of samples simultaneously. Moreover, in contrast to MFA, NN-MDP can actively construct the intrinsic graph and penalty graph without unknown parameters. Experimental results on the 0RL, Yale, and FERET face databases show that NN-MDP not only avoids the intractability, and high expense of neighborhood parameter selection, but is also more applicable to face recognition with NN classifier than other methods. 展开更多
关键词 dimensionality reduction (DR) face recogni-tion marginal Fisher analysis (MFA) locality preservingprojections (LPP) graph construction margin-based nearest-neighbor (NN) classifier
原文传递
Theoretical analysis of the confidence metrics for nearestneighbor classifier
19
作者 Xiaofan Lin Xiaoqing Ding Youshou Wu 《Chinese Science Bulletin》 SCIE EI CAS 1998年第6期464-467,共4页
Confidence value plays a vital role in the decision of rejection threshold and the integration of multiple classifiers. Nearest neighbor (NN) classifier is the most traditional and most common nonparameter statistical... Confidence value plays a vital role in the decision of rejection threshold and the integration of multiple classifiers. Nearest neighbor (NN) classifier is the most traditional and most common nonparameter statistical pattern classifier. However, so far there is no explicate theoretical analysis of the connection between nearest distance and confidence value. An analytical insight into different approximations is presented and one formula is pointed out that it is optimal in the sense of mathematical expectation. Practice in handwritten numeral recognition strongly supports the conclusion. 展开更多
关键词 nearest neighbor classifier CONFIDENCE VALUE optimal REJECTION handwritten numeral recognition.
全文增补中
一种基于预分类的高效最近邻分类器算法 被引量:8
20
作者 王卫东 郑宇杰 +1 位作者 杨静宇 杨健 《计算机科学》 CSCD 北大核心 2007年第2期198-200,共3页
本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸... 本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸库上的实验结果说明,该算法对小样本数据的识别具有明显优势。 展开更多
关键词 最近邻分类器 预类别 多分类器组合 小样本问题 人脸识别
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部