期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Optimization of a Single Flash Geothermal Power Plant Powered by a Trans-Critical Carbon Dioxide Cycle Using Genetic Algorithm and Nelder-Mead Simplex Method
1
作者 Yashar Aryanfar Jorge Luis García Alcaraz 《Energy Engineering》 EI 2023年第2期263-275,共13页
The usage of renewable energies,including geothermal energy,is expanding rapidly worldwide.The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles.T... The usage of renewable energies,including geothermal energy,is expanding rapidly worldwide.The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles.This paper proposes a combined power generation cycle(single flash geothermal cycle with trans-critical CO_(2) cycle)and simulates in the EES(Engineering Equation Solver)software.The results show that the design parameters of the proposed system are significantly improved compared to the BASIC single flash cycle.Then,the proposed approach is optimized using the genetic algorithm and the Nelder-Mead Simplex method.Separator pressure,steam turbine output pressure,and CO_(2) turbine inlet pressure are three assumed variable parameters,and exergy efficiency is the target parameter.In the default operating mode,the system exergy efficiency was 32%,increasing to 39%using the genetic algorithm and 37%using the Nelder-Mead method. 展开更多
关键词 OPTIMIZATION GEOTHERMAL genetic algorithm nelder-mead simplex exergy efficiency
下载PDF
Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data 被引量:1
2
作者 Leyang Wang Ranran Xu Fengbin Yu 《Geodesy and Geodynamics》 CSCD 2022年第4期386-398,共13页
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line... The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment. 展开更多
关键词 Fault parameter inversion Genetic algorithm nelder-mead simplex algorithm Neural network algorithm
下载PDF
An FPGA-based LDPC decoder with optimized scale factor of NMS decoding algorithm
3
作者 LI Jinming ZHAGN Pingping +1 位作者 WANG Lanzhu WANG Guodong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期398-406,共9页
Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm wi... Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm with variable scale factor is proposed for the near-earth space LDPC codes(8177,7154)in the consultative committee for space data systems(CCSDS)standard.The shift characteristics of field programmable gate array(FPGA)is used to optimize the quantization data of check nodes,and finally the function of LDPC decoder is realized.The simulation and experimental results show that the designed FPGA-based LDPC decoder adopts the scaling factor in the NMS decoding algorithm to improve the decoding performance,simplify the hardware structure,accelerate the convergence speed and improve the error correction ability. 展开更多
关键词 LDPC code nmS decoding algorithm variable scale factor QUANTIZATION
下载PDF
基于YOLOv7的矿工吸烟识别方法研究 被引量:2
4
作者 王彬 赵作鹏 《现代信息科技》 2024年第6期66-69,73,共5页
井下矿工的吸烟行为严重影响煤矿生产安全,对井下矿工吸烟行为的有效识别迫在眉睫。针对煤矿井下的特殊环境和传统识别方法准确率低的问题,提出一种基于YOLOv7的矿工吸烟行为识别算法YOLO-SFN。将SimAM嵌入到YOLOv7的网络结构中,用Focu... 井下矿工的吸烟行为严重影响煤矿生产安全,对井下矿工吸烟行为的有效识别迫在眉睫。针对煤矿井下的特殊环境和传统识别方法准确率低的问题,提出一种基于YOLOv7的矿工吸烟行为识别算法YOLO-SFN。将SimAM嵌入到YOLOv7的网络结构中,用Focus模块替换MPConv下分支中的3×3卷积核,提高模型在复杂背景下的特征提取能力。在后处理阶段采用Soft-NMS作为网络模型的后处理算法,解决了传统NMS算法在复杂密集环境中的漏检问题。实验结果表明,该方法的准确率为96.45%,召回率为92%,精确率为97.05%。研究成果已经在陈四楼煤矿得以推广应用,实现了对煤矿井下矿工吸烟行为的有效监管。 展开更多
关键词 目标检测 注意力机制 YOLOv7 nmS算法 吸烟识别
下载PDF
基于Nelder-Mead算法的机器人主动嗅觉室内时变污染源定位 被引量:1
5
作者 周晅毅 王富玉 +1 位作者 杨流阔 顾明 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期812-820,共9页
将Nelder-Mead(NM)算法与机器人主动嗅觉相结合,对室内衰减型和周期型两种时变污染源开展定位研究。首先通过计算流体动力学(CFD)模拟得到这两种时变污染源的浓度场,然后利用NM算法对其定位。结果表明,两种时变污染源的定位成功率均在80... 将Nelder-Mead(NM)算法与机器人主动嗅觉相结合,对室内衰减型和周期型两种时变污染源开展定位研究。首先通过计算流体动力学(CFD)模拟得到这两种时变污染源的浓度场,然后利用NM算法对其定位。结果表明,两种时变污染源的定位成功率均在80%以上。对机器人数量、响应时间和最大搜索步数这三个影响因素进行讨论,通过分析发现当室内面积为100 m2左右时,机器人数量为5个、响应时间为2 s、最大搜索步数为50步定位效果最好。 展开更多
关键词 机器人主动嗅觉 nm算法 时变污染源 计算流体动力学模拟
下载PDF
改进Mask R-CNN的车辆检测算法 被引量:1
6
作者 汪菊 孙玉 吴宜良 《福州大学学报(自然科学版)》 CAS 北大核心 2024年第4期421-429,共9页
为提升在不同复杂场景下的车辆检测性能,提出一种基于改进Mask R-CNN的车辆检测算法.在算法的主干网络ResNet50中引入PSA极自注意力机制提升主干网络特征提取能力;在特征金字塔顶层网络中添加一个带有ECA注意力机制的分支与原分支进行... 为提升在不同复杂场景下的车辆检测性能,提出一种基于改进Mask R-CNN的车辆检测算法.在算法的主干网络ResNet50中引入PSA极自注意力机制提升主干网络特征提取能力;在特征金字塔顶层网络中添加一个带有ECA注意力机制的分支与原分支进行特征融合,缓解顶层特征由于通道降维造成的信息损失.重新设计卷积检测头使得边框回归更为准确,并使用余弦退火算法和Soft-NMS算法来优化训练过程和后处理结果.实验结果表明,改进的Mask R-CNN车辆检测算法相比原Mask R-CNN算法在复杂场景下具有更高的检测精度,在CNRPark-EXT测试集中平均精确度提高3.8%,在更具挑战性的MiniPark测试集中平均精确度提高7.9%. 展开更多
关键词 车辆检测 Mask R-CNN算法 PSA极自注意力机制 ECA注意力机制 Soft-nmS算法
下载PDF
基于改进YOLOv5s模型的车辆及行人检测方法 被引量:2
7
作者 董恒祥 潘江如 +2 位作者 董芙楠 郭鸿鑫 赵晴 《北华大学学报(自然科学版)》 CAS 2024年第2期244-254,共11页
针对道路交通环境中车辆及行人目标较小或被遮挡造成的检测精度低以及误检、漏检问题,提出一种基于改进YOLOv5s模型的车辆及行人目标检测方法。针对小目标和遮挡目标,引入SIoU边界框损失函数,增加小目标检测层,增强对小尺度特征的获取;... 针对道路交通环境中车辆及行人目标较小或被遮挡造成的检测精度低以及误检、漏检问题,提出一种基于改进YOLOv5s模型的车辆及行人目标检测方法。针对小目标和遮挡目标,引入SIoU边界框损失函数,增加小目标检测层,增强对小尺度特征的获取;改进特征金字塔结构,增加横向特征图传递,并使用CSP stage替换C3_F特征提取网络,使其获得更多的语义信息和图形信息;改进后处理NMS算法,优化冗余边界框剔除方法,筛选出高质量检测结果。试验结果表明:改进YOLOv5s模型算法的Precision、Recall、mAP@0.5和mAP@0.5:0.95指标均优于Faster-RCNN、YOLOv3-tiny和YOLOv8s算法,与原YOLOv5s模型算法相比Precision下降了0.4%,但Recall、mAP@0.5和mAP@0.5:0.95提高了3.4%、2.1%和6.0%,分别达到了86.1%、92.9%和70.0%,对小目标和遮挡目标的检测效果明显提高,证明此改进方法有效解决了对小目标和遮挡目标检测精度低以及误检、漏检问题。 展开更多
关键词 智能交通系统 交通安全 YOLOv5s模型 小目标 遮挡目标 特征金字塔 后处理nmS算法
下载PDF
Nelder-Mead单纯形算法改进及在气象上的应用 被引量:1
8
作者 张正秋 《应用气象学报》 CSCD 北大核心 2011年第5期584-589,共6页
Nelder-Mead Simplex(NMS)算法是一种查找多元函数局地最小值的无微分算法,在现代科学计算中得到广泛应用,该文提出了一种对NMS算法的改进方法。改进后,大大简化了其计算过程,提高了该算法的收敛速度。利用改进后的算法对陆面过程参数... Nelder-Mead Simplex(NMS)算法是一种查找多元函数局地最小值的无微分算法,在现代科学计算中得到广泛应用,该文提出了一种对NMS算法的改进方法。改进后,大大简化了其计算过程,提高了该算法的收敛速度。利用改进后的算法对陆面过程参数进行了拟合计算,结果表明:改进的NMS算法对非线性公式具有非常高的拟合精度,可将其应用于气象学上非线性问题计算或非线性方程组求解。 展开更多
关键词 nmS算法 改进 无微分 气象学 非线性应用
下载PDF
基于深度学习的智能交通车流监测与预测研究
9
作者 孙志娟 李景景 冯玉涛 《软件工程》 2024年第4期13-16,共4页
为了方便交通部门改善交通拥堵问题,使用旭日X3嵌入式开发板作为硬件平台,通过YOLOv8深度学习网络识别道路上通行的车辆及其车辆类型。使用开放神经网络交换(Open Neural Network Exchange, ONNX)格式可视化编辑工具去掉了模型的输出头... 为了方便交通部门改善交通拥堵问题,使用旭日X3嵌入式开发板作为硬件平台,通过YOLOv8深度学习网络识别道路上通行的车辆及其车辆类型。使用开放神经网络交换(Open Neural Network Exchange, ONNX)格式可视化编辑工具去掉了模型的输出头,将网络中的激活函数由SiLU函数更换为ReLU函数,将模型输出由80个检测类别更改为4个检测类别,在Small版本中,使用非极大值抑制算法(Non-Maximum Suppression, NMS)将最合适的检测框筛选出来,然后用SORT(Simple Online and Realtime Tracking)多目标追踪算法和匹配算法将独立帧检测到的车辆关联起来,实现车辆自动计数。在服务器上配置好YOLOv8的训练环境,训练3个周期,测试模型的mAP指标为0.635,推理速度提升至20 fps左右,目标检测系统的计数精度达到98%,可以准确获取到路口的交通流数据,帮助改善交通拥堵问题。 展开更多
关键词 YOLOv8深度学习网络 nmS算法 SORT多目标追踪算法
下载PDF
目标物体检测——YOLO算法介绍
10
作者 刘栩辰 《大众科学》 2024年第6期1-3,共3页
物体检测是计算机视觉中的一个具有挑战性的任务,涉及到在图像或视频中定位和分类物体。其中一个最流行的基于深度学习的物体检测方法是YOLO。YOLO已经在各种物体检测基准测试中取得了最先进的性能,并致力于通过神经网络在单次前向传递... 物体检测是计算机视觉中的一个具有挑战性的任务,涉及到在图像或视频中定位和分类物体。其中一个最流行的基于深度学习的物体检测方法是YOLO。YOLO已经在各种物体检测基准测试中取得了最先进的性能,并致力于通过神经网络在单次前向传递中检测图像中的对象的概念,使其成为可用的最快的对象检测模型之一。介绍YOLO的发展、技术、架构以及所利用的算法。 展开更多
关键词 YOLO 目标检测 CNN nmS 算法 ResNet 划分锚框技术
下载PDF
基于SSD算法的人脸检测算法研究
11
作者 郑文秀 赵兴娜 《现代信息科技》 2024年第19期17-22,共6页
针对传统SSD算法中对小目标检测效果不好的问题,提出一种基于ResNet的人脸检测算法。将SSD算法的基础网络VGG改进为ResNet网络,并通过残差网络,采用特征融合的方式将不同深度的特征信息进行融合,从而提高算法对小尺度人脸的检测性能。同... 针对传统SSD算法中对小目标检测效果不好的问题,提出一种基于ResNet的人脸检测算法。将SSD算法的基础网络VGG改进为ResNet网络,并通过残差网络,采用特征融合的方式将不同深度的特征信息进行融合,从而提高算法对小尺度人脸的检测性能。同时,针对SSD算法对重叠框出现漏检的问题,将非极大值抑制算法(NMS)改进为Soft-NMS。此外,通过设置一个衰减函数,来降低相邻检测框的置信度,解决传统NMS算法对分数较低的检测框过滤掉的问题,能够降低算法的漏检率,提升算法的检测精度。 展开更多
关键词 人脸检测 SSD算法 ResNet Soft-nmS
下载PDF
A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM 被引量:2
12
作者 Shao Wei Qian Zuping Yuan Feng 《Journal of Electronics(China)》 2007年第4期560-566,共7页
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ... A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA. 展开更多
关键词 Generalized Rayleigh quotient Hybrid genetic algorithm Phase-only optimization Direct Data Domain Least Squares (D^3LS) algorithm nelder-mead simplex algorithm
下载PDF
基于Faster-RCNN的自然环境下苹果识别 被引量:5
13
作者 石展鲲 杨风 +2 位作者 韩建宁 郭鑫 曹尚斌 《计算机与现代化》 2023年第2期62-65,共4页
针对苹果园中存在的果实相互重叠、枝叶干扰以及复杂背景等问题,本文提出Faster-RCNN一种改进的模型。该模型通过增强Mosaic数据,使得识别小物体目标果实能力得到提升,同时,对Faster-RCNN结构中的锚框进行优化,优化后的锚框能更好地检... 针对苹果园中存在的果实相互重叠、枝叶干扰以及复杂背景等问题,本文提出Faster-RCNN一种改进的模型。该模型通过增强Mosaic数据,使得识别小物体目标果实能力得到提升,同时,对Faster-RCNN结构中的锚框进行优化,优化后的锚框能更好地检测出距离相机较远的目标果实,以及使用Soft NMS算法对密集区域的识别效果进一步得到改进。通过对300幅未参与识别的自然环境下的苹果图像进行验证,验证结果表明:召回率为91.44%,准确率为93.35%,F1值为92.38%,每幅图像的检测可在0.2 s内完成。改进后的算法鲁棒性得到增强,能够满足在自然环境下对苹果果实的识别工作。 展开更多
关键词 Faster-RCNN Mosaic数据增强 目标识别 Soft nmS算法
下载PDF
FS-YOLOv5:轻量化红外目标检测方法 被引量:12
14
作者 黄磊 杨媛 +2 位作者 杨成煜 杨威 李耀华 《计算机工程与应用》 CSCD 北大核心 2023年第9期215-224,共10页
针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPD... 针对传统目标识别算法复杂场景下的道路目标识别精度低、实时性差、小目标检测难度大等问题,提出了基于红外场景下FS-YOLOv5轻量化模型。采用单阶段目标检测网络YOLOv5s作为基础网络,提出了一种新的FSMobileNetV3网络代替原网络中的CSPDarknet主干网络来提取特征图像;在原网络CIoU损失函数的基础上引入Power变换,替换为α-CIoU,提高网络对小目标的检测能力;将K-means++聚类算法应用在FLIR红外数据集上重新生成Anchor,最后利用DIoU-NMS替换原网络的NMS后处理方法,改善对遮挡物体的检测能力,降低了模型的漏检率。通过在FLIR红外数据集上的消融实验验证了FS-YOLOv5轻量化算法满足红外场景下的道路目标检测任务,与原网络相比,在平均精度仅降低0.37个百分点的前提下,FS-YOLOv5模型的大小减少了26%,参数量减少了29%,检测速度提升了11 FPS,满足了在不同场景下移动端部署的需求。 展开更多
关键词 轻量化 红外目标检测 损失函数 nmS算法 YOLOv5
下载PDF
基于改进YOLOv4的安全帽佩戴检测方法 被引量:4
15
作者 石家玮 杨莉琼 +2 位作者 方艳红 杜义祥 李明骏 《计算机工程与设计》 北大核心 2023年第2期518-525,共8页
针对建筑施工场地场景下远距离小目标安全帽佩戴检测问题,提出的一种改进YOLOv4的安全帽检测方法。将BN层和卷积层合并减少修改后的网络前向推理计算量,利用K-means聚类算法改进先验框维度,采用柔性NMS算法进行置信度权重修改解决标签... 针对建筑施工场地场景下远距离小目标安全帽佩戴检测问题,提出的一种改进YOLOv4的安全帽检测方法。将BN层和卷积层合并减少修改后的网络前向推理计算量,利用K-means聚类算法改进先验框维度,采用柔性NMS算法进行置信度权重修改解决标签重写问题,应用多尺度特征融合提升模型识别准确率。实验结果表明,该方法在安全帽数据集的检测任务中mAP提升2.91%;对低于32*32尺寸目标AP值相较于原算法提升6.02%,能够有效提升安全帽佩戴检测范围和准确率。 展开更多
关键词 安全帽佩戴检测 多尺度特征融合 卷积神经网络 YOLOv4算法 K均值聚类算法 非极大值抑制算法 目标检测
下载PDF
YOLO-Banana:An Effective Grading Method for Banana Appearance Quality
16
作者 Dianhui Mao Xuesen Wang +3 位作者 Yiming Liu Denghui Zhang Jianwei Wu Junhua Chen 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期363-373,共11页
The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana ... The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana appearance quality based on the number of banana defect points.Due to the minor and dense defects on the surface of bananas,existing detection algorithms have poor detection results and high missing rates.To address this,we propose a densitybased spatial clustering of applications with noise(DBSCAN)and K-means fusion clustering method that utilizes refined anchor points to obtain better initial anchor values,thereby enhancing the network’s recognition accuracy.Moreover,the optimized progressive aggregated network(PANet)enables better multi-level feature fusion.Additionally,the non-maximum suppression function is replaced with a weighted non-maximum suppression(weighted NMS)function based on distance intersection over union(DIoU).Experimental results show that the model’s accuracy is improved by 2.3%compared to the original YOLOv5 network model,thereby effectively grading the banana appearance quality. 展开更多
关键词 YOLOv5 banana appearance grading clustering algorithm weighted non-maximum suppression(weighted nmS) progressive aggregated network(PANet)
下载PDF
基于改进的Faster-RCNN的人群密度预警方法
17
作者 常珍 《软件》 2023年第10期86-88,共3页
本文提出了一种改进的基于Faster-RCNN的人群密度预警方法。通过引入软非极大值抑制算法,对Faster-RCNN进行了优化,显著提升了对密集人群的检测能力。经过改进的算法在测试集上的平均绝对误差和均方误差分别降低至3.4和9.8,表现出色。... 本文提出了一种改进的基于Faster-RCNN的人群密度预警方法。通过引入软非极大值抑制算法,对Faster-RCNN进行了优化,显著提升了对密集人群的检测能力。经过改进的算法在测试集上的平均绝对误差和均方误差分别降低至3.4和9.8,表现出色。该方法不仅可用于行人检测,还能实时生成人群密度热力图,并根据平均密度分级划分拥挤程度。 展开更多
关键词 公共安全 人群密度估计 机器视觉 Soft-nmS算法 Faster-RCNN算法
下载PDF
利用位置式数字PID算法提高DFB激光器驱动电源稳定性 被引量:11
18
作者 战俊彤 付强 +3 位作者 段锦 张肃 高铎瑞 姜会林 《红外与激光工程》 EI CSCD 北大核心 2015年第6期1757-1761,共5页
由于分布反馈式(DFB)激光器输出光功率受其激射电流的影响,为了保证其稳定的光功率输出,研制了基于位移式数字PID算法的高稳定性DFB激光器驱动电源。在硬件设计方面,该驱动电源主要由控制器模块、恒流源模块和保护电路模块组成。采用模... 由于分布反馈式(DFB)激光器输出光功率受其激射电流的影响,为了保证其稳定的光功率输出,研制了基于位移式数字PID算法的高稳定性DFB激光器驱动电源。在硬件设计方面,该驱动电源主要由控制器模块、恒流源模块和保护电路模块组成。采用模拟PI深度负反馈环节有效地提高了驱动电流的稳定性。在软件方面,采用位置式数字PID算法,消除了实际驱动电流值与理论值之间的微小差异。利用该驱动电源,对中心波长为1 563.01 nm的DFB激光器做了驱动测试。实验表明,长期稳定性(>220 h)优于4×10-5,中心波长未出现漂移,为其在红外气体检测中提供了优越性能保障。 展开更多
关键词 分布反馈式激光器 驱动电源 模拟PI深度负反馈 位置式数字PID算法 1 563.01 nm
下载PDF
基于SVM-LeNet模型融合的行人检测算法 被引量:12
19
作者 邹冲 蔡敦波 +2 位作者 赵娜 刘莹 赵彤洲 《计算机工程》 CAS CSCD 北大核心 2017年第5期169-173,共5页
在方向梯度直方图(HOG)联合支持向量机(SVM)算法(HOG-SVM)和Le Net网络模型基础上,提出了HOG与卷积神经网络(CNN)融合的行人检测算法(SVM-Le Net)。采用多尺度滑动窗口提取HOG特征并送入SVM分类器,根据后验概率判断候选区,随后运用CNN... 在方向梯度直方图(HOG)联合支持向量机(SVM)算法(HOG-SVM)和Le Net网络模型基础上,提出了HOG与卷积神经网络(CNN)融合的行人检测算法(SVM-Le Net)。采用多尺度滑动窗口提取HOG特征并送入SVM分类器,根据后验概率判断候选区,随后运用CNN算法剔除误检窗口。为解决单个目标被多个候选区域框定的问题,使用非极大值抑制算法(NMS)进行多矩形融合,保留检测区域中后验概率最大的窗口抑制与其重叠的检测窗口。分类过程中,以候选区域在SVM和Le Net中后验概率为依据判断行人区域。实验结果表明,与HOGSVM和Le Net行人检测算法相比,该算法在准确率和召回率上有明显优势。 展开更多
关键词 行人检测 权重模板 支持向量机 非极大值抑制算法 卷积神经网络
下载PDF
水轮机调速系统的线性自抗扰优化控制 被引量:13
20
作者 黄宇 王佳荣 《系统仿真学报》 CAS CSCD 北大核心 2016年第12期3033-3040,共8页
针对线性自抗扰控制器参数较多、调节起来较为困难的缺点。提出一种基于下山单纯形法的引力搜索算法,该算法将下山单纯形法的替换机制融入到引力搜索算法粒子的更新中,利用单纯形法具有较强的局部搜索能力,有效克服了引力搜索算法陷入... 针对线性自抗扰控制器参数较多、调节起来较为困难的缺点。提出一种基于下山单纯形法的引力搜索算法,该算法将下山单纯形法的替换机制融入到引力搜索算法粒子的更新中,利用单纯形法具有较强的局部搜索能力,有效克服了引力搜索算法陷入局部最优的缺点。将本文提出的算法应用于水轮机调速系统的线性自抗扰控制器参数优化。仿真结果表明:优化后的线性自抗扰控制器能够很好的抑制超调、减小负调并缩短调节时间,在系统工况发生变化时,仍有良好的控制效果,具有较强的鲁棒性,且能够取得比PID控制更好的抗干扰性能。 展开更多
关键词 水轮机调速系统 线性自抗扰控制 引力搜索算法 下山单纯形法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部